STABILITY OF TRAVELING WAVES FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS WITH MULTIPLICATIVE NOISE

被引:10
作者
Hamster, C. H. S. [1 ]
Hupkes, H. J. [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
traveling waves; stochastic forcing; nonlinear stability; stochastic phase shift; MULTIDIMENSIONAL STABILITY; NONLINEAR STABILITY; FRAMEWORK; PATTERNS;
D O I
10.1137/18M1226348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider reaction-diffusion equations that are stochastically forced by a small multiplicative noise term. We show that spectrally stable traveling wave solutions to the deterministic system retain their orbital stability if the amplitude of the noise is sufficiently small. By applying a stochastic phase-shift together with a time-transform, we obtain a quasi-linear stochastic partial differential equation that describes the fluctuations from the primary wave. We subsequently follow the semigroup approach developed in [C. H. S. Hamster and H. J. Hupkes, SIAM T. Appl. Dymarn. Syst., 18 (2019), pp. 205-278] to handle the nonlinear stability question. The main novel feature is that we no longer require the diffusion coefficients to be equal.
引用
收藏
页码:1386 / 1426
页数:41
相关论文
共 39 条
[1]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[2]   Pulse propagation sustained by noise in arrays of bistable electronic circuits -: art. no. 061108 [J].
Báscones, R ;
García-Ojalvo, J ;
Sancho, JM .
PHYSICAL REVIEW E, 2002, 65 (06)
[3]   NONLINEAR STABILITY OF SEMIDISCRETE SHOCKS FOR TWO-SIDED SCHEMES [J].
Beck, Margaret ;
Hupkes, Hermen Jan ;
Sandstede, Bjoern ;
Zumbrun, Kevin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (02) :857-903
[4]   Nonlinear Stability of Time-Periodic Viscous Shocks [J].
Beck, Margaret ;
Sandstede, Bjoern ;
Zumbrun, Kevin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (03) :1011-1076
[5]   Bistable Traveling Waves around an Obstacle [J].
Berestycki, Henri ;
Hamel, Francois ;
Matano, Hiroshi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (06) :729-788
[6]   PATTERN SIZE IN GAUSSIAN FIELDS FROM SPINODAL DECOMPOSITION [J].
Bianchi, Luigi Amedeo ;
Bloemker, Dirk ;
Wacker, Philipp .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (04) :1292-1319
[7]  
BRASSESCO S, 1995, ANN I H POINCARE-PR, V31, P81
[8]   Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields [J].
Bressloff, Paul C. ;
Kilpatrick, Zachary P. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (01) :305-334
[9]   Front Propagation in Stochastic Neural Fields [J].
Bressloff, Paul C. ;
Webber, Matthew A. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (02) :708-740
[10]   A collective coordinate framework to study the dynamics of travelling waves in stochastic partial differential equations [J].
Cartwright, Madeleine ;
Gottwald, Georg A. .
PHYSICA D-NONLINEAR PHENOMENA, 2019, 397 :54-64