Remote-Sensing Inversion Method for Evapotranspiration by Fusing Knowledge and Multisource Data

被引:3
作者
Wang, Jingui [1 ]
Cheng, Dongjuan [1 ]
Wu, Lihui [2 ]
Yu, Xueyuan [3 ]
机构
[1] Hebei Univ Engn, Sch Water Conservancy & Hydroelect Power, Handan, Hebei, Peoples R China
[2] Handan Design & Res Inst Water Conservancy & Hydro, Handan 056001, Hebei, Peoples R China
[3] HeBei Gal Xiang Geog Informat Technol Serv Co Ltd, Handan 056001, Hebei, Peoples R China
关键词
LATENT-HEAT FLUX; SURFACE-TEMPERATURE; TERRESTRIAL EVAPOTRANSPIRATION; EVAPORATION; MODIS;
D O I
10.1155/2022/2076633
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Evapotranspiration (ET) is the main process parameter of the land surface heat and water balance. Evapotranspiration remote-sensing inversion can be divided into two types of methods, process-driven and data-driven, according to the model power. This paper presents a comprehensive and systematic review of the research progress of data-driven ET remote-sensing inversion methods and their products; reviews the basic principles, advantages, and disadvantages of related methods/products from three perspectives: empirical regression, machine learning, and data fusion; and finally indicates the development direction of data-driven ET remote-sensing inversion research.
引用
收藏
页数:13
相关论文
共 37 条
[1]   Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery [J].
Anderson, M. C. ;
Kustas, W. P. ;
Norman, J. M. ;
Hain, C. R. ;
Mecikalski, J. R. ;
Schultz, L. ;
Gonzalez-Dugo, M. P. ;
Cammalleri, C. ;
d'Urso, G. ;
Pimstein, A. ;
Gao, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) :223-239
[2]   On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient [J].
Bai, Yun ;
Zhang, Sha ;
Bhattarai, Nishan ;
Mallick, Kaniska ;
Liu, Qi ;
Tang, Lili ;
Im, Jungho ;
Guo, Li ;
Zhang, Jiahua .
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 298
[3]   A NEW LOOK AT THE SIMPLIFIED METHOD FOR REMOTE-SENSING OF DAILY EVAPOTRANSPIRATION [J].
CARLSON, TN ;
CAPEHART, WJ ;
GILLIES, RR .
REMOTE SENSING OF ENVIRONMENT, 1995, 54 (02) :161-167
[4]   Evolution of evapotranspiration models using thermal and shortwave remote sensing data [J].
Chen, Jing M. ;
Liu, Jane .
REMOTE SENSING OF ENVIRONMENT, 2020, 237
[5]   Using Bayesian model averaging to estimate terrestrial evapotranspiration in China [J].
Chen, Yang ;
Yuan, Wenping ;
Xia, Jiangzhou ;
Fisher, Joshua B. ;
Dong, Wenjie ;
Zhang, Xiaotong ;
Liang, Shunlin ;
Ye, Aizhong ;
Cai, Wenwen ;
Feng, Jinming .
JOURNAL OF HYDROLOGY, 2015, 528 :537-549
[6]   GSWP-2 - Multimodel anlysis and implications for our perception of the land surface [J].
Dirmeyer, Paul A. ;
Gao, Xiang ;
Zhao, Mei ;
Guo, Zhichang ;
Oki, Taikan ;
Hanasaki, Naota .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (10) :1381-+
[7]   Synthesis of global actual evapotranspiration from 1982 to 2019 [J].
Elnashar, Abdelrazek ;
Wang, Linjiang ;
Wu, Bingfang ;
Zhu, Weiwei ;
Zeng, Hongwei .
EARTH SYSTEM SCIENCE DATA, 2021, 13 (02) :447-480
[8]  
Genaidy M., 2020, Misr J. Agric. Eng, V37, P81, DOI [10.21608/mjae.2020.94971, DOI 10.21608/MJAE.2020.94971]
[9]   WHEAT CANOPY TEMPERATURE - PRACTICAL TOOL FOR EVALUATING WATER REQUIREMENTS [J].
JACKSON, RD ;
REGINATO, RJ ;
IDSO, SB .
WATER RESOURCES RESEARCH, 1977, 13 (03) :651-656
[10]   Toward an estimation of global land surface heat fluxes from multisatellite observations [J].
Jimenez, Carlos ;
Prigent, Catherine ;
Aires, Filipe .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114 :D06305