Solar vapor generation using bubbly flow nanofluids with collaborative light-harvesting nanoparticles

被引:16
|
作者
Yao, Guansheng [1 ]
Feng, Yijun [1 ]
Liu, Guohua [1 ,2 ]
Xu, Jinliang [1 ,2 ]
机构
[1] North China Elect Power Univ, Beijing Key Lab Multiphase Flow & Heat Transfer L, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Minist Educ, Key Lab Power Stn Energy Transfer Convers & Syst, Beijing 102206, Peoples R China
关键词
Solar evaporation; Nanofluid; Bubble; Plasmonic heating; Vapor generation; PLASMONIC NANOFLUIDS; WATER EVAPORATION; GOLD; OSCILLATIONS; DYNAMICS; HEAT;
D O I
10.1016/j.solener.2020.07.057
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nanotechnology can produce metallic particles of nanometer sizes with unique optical and thermal properties. Utilizing the nanofluid in solar systems has distinct advantages over conventional fluids in light harvesting, thermal generation and heat transport. However, the plasmonic effect only induces strong light absorption around its nature resonance peak, which is not desirable for broadband solar absorption. Herein, we propose a composite nanofluid composed of three different kinds of particles with distinguish absorbance peaks for collaborative light absorption over the entire solar spectrum. Dynamic bubbles are further introduced into the nanofluid to promote the solar vapor generation. With light absorption spanning from ultraviolet, visible to near-infrared wavelengths, these particle-bubble couplings induce multiple scattering events, increasing photon absorption and light flux within local domain, leading to intensive heating that activates phase-change evaporation in the close proximity. The bubbly flow nanofluid exhibits the best photothermal efficiency of 91.2% than that of the other counterparts, enabling fast vapor diffusion with an upward bubble-bursting flow, and therefore achieving a decent steam generation efficiency of 40.8% under one-sun irradiation. Our findings not only suggest a new way to improve solar vapor generation in laden-particle solution, but also shed lights on the development of novel solar thermal systems.
引用
收藏
页码:1214 / 1221
页数:8
相关论文
共 50 条
  • [1] Solar steam generation enabled by bubbly flow nanofluids
    Yao G.
    Xu J.
    Liu G.
    Solar Energy Materials and Solar Cells, 2020, 206
  • [2] Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
    Neumann, Oara
    Feronti, Curtis
    Neumann, Albert D.
    Dong, Anjie
    Schell, Kevin
    Lu, Benjamin
    Kim, Eric
    Quinn, Mary
    Thompson, Shea
    Grady, Nathaniel
    Nordlander, Peter
    Oden, Maria
    Halas, Naomi J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) : 11677 - 11681
  • [3] Improving the light-harvesting of second generation solar cells with photochemical upconversion
    Cheng, Yuen Yap
    Fueckel, Burkhard
    Schulze, Tim
    MacQueen, Rowan W.
    Tayebjee, Murad J. Y.
    Danos, Andrew
    Khoury, Tony
    Clady, Raphael G. C. R.
    Ekins-Daukes, N. J.
    Crossley, Maxwell J.
    Stannowski, Bernd
    Lips, Klaus
    Schmidt, Timothy W.
    ORGANIC PHOTOVOLTAICS XIII, 2012, 8477
  • [4] Panchromatic absorbers for solar light-harvesting
    Alexy, Eric J.
    Yuen, Jonathan M.
    Chandrashaker, Vanampally
    Diers, James R.
    Kirmaier, Christine
    Bocian, David F.
    Holten, Dewey
    Lindsey, Jonathan S.
    CHEMICAL COMMUNICATIONS, 2014, 50 (93) : 14512 - 14515
  • [5] Improved light-harvesting in organic solar cells with plasmonic nanoparticles in the active layer
    Butcher, Dennis P.
    Yen, Chun-wan
    Durstock, Michael
    Tabor, Christopher
    Wadams, Robert C.
    Fabris, Laura
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [6] Light-harvesting antennae for polymer solar cells
    Doust, Alexander B.
    Yang, Xiujuan
    Dykstra, Tieneke E.
    Koo, Kevin
    Scholes, Gregory D.
    APPLIED PHYSICS LETTERS, 2006, 89 (21)
  • [7] Light-harvesting fullerenes for organic solar cells
    Baffreau, J.
    Leroy-Lhez, S.
    Derbal, H.
    Inigo, A. R.
    Nunzi, J-M
    Groeneveld, M. M.
    Williams, R. M.
    Hudhomme, P.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2006, 36 (03): : 301 - 305
  • [8] Plasmonic Nanoparticles as Light-Harvesting Enhancers in Perovskite Solar Cells: A User's Guide
    Carretero-Palacios, S.
    Jimenez-Solano, A.
    Miguez, H.
    ACS ENERGY LETTERS, 2016, 1 (01): : 323 - 331
  • [9] Study on Solar-driven Evaporation Performance of Bubbly Flow Nanofluids
    Yao, Guan-Sheng
    Feng, Yi-Jun
    Xu, Jin-Liang
    Liu, Guo-Hua
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (03): : 647 - 650
  • [10] Development of the energy flow in light-harvesting dendrimers
    Andrews, David L.
    Li, Shaopeng
    Rodriguez, Justo
    Slota, Jo
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (13):