Asymptotic dimension of coarse spaces via maps to simplicial complexes

被引:0
作者
Cencelj, M. [1 ]
Dydak, J. [2 ]
Vavpetic, A. [3 ]
机构
[1] Univ Ljubljani, Pedagoska Fak, IMFM, Kardeljeva Ploscad 16, SI-1111 Ljubljana, Slovenia
[2] Univ Tennessee, Knoxville, TN 37996 USA
[3] Univ Ljubljani, Fak Matemat Fiziko, Jadranska Ulica 19, SI-1111 Ljubljana, Slovenia
关键词
Asymptotic dimension; Coarse geometry; Lipschitz maps; Property A;
D O I
10.1016/j.topol.2018.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a paracompact space X is of covering dimension at most n if and only if any map f : X -> K from X to a simplicial complex K can be pushed into its n-skeleton K-(n). We use the same idea to characterize asymptotic dimension in the coarse category of arbitrary coarse spaces. Continuity of the map f is replaced by variation of f on elements of a uniformly bounded cover. In the same way, one can generalize Property A of G. Yu to arbitrary coarse spaces. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 7 条
[1]   Coarse amenability versus paracompactness [J].
Cencelj, M. ;
Dydak, J. ;
Vavpetic, A. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2014, 6 (01) :125-152
[2]   Asymptotic dimension, property A, and Lipschitz maps [J].
Cencelj, M. ;
Dydak, J. ;
Vavpetic, A. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :561-571
[3]   An alternative definition of coarse structures [J].
Dydak, J. ;
Hoffland, C. S. .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (09) :1013-1021
[4]  
Dydak J, 2003, TOPOL P, P125
[5]  
Nowak P.W., 2008, NOT AM MATH SOC, V55, P474
[6]  
Roe J., 2003, U LECT SER, V31
[7]  
Willett R., 2009, LIMITS GRAPHS GROUP, P191