Untethered control of functional origami microrobots with distributed actuation

被引:241
作者
Novelino, Larissa S. [1 ]
Ze, Qiji [2 ]
Wu, Shuai [2 ]
Paulino, Glaucio H. [1 ]
Zhao, Ruike [2 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
关键词
untethered actuation; origami; magnetic actuation; origami computing; multifunctional systems; KIRIGAMI;
D O I
10.1073/pnas.2013292117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses.
引用
收藏
页码:24096 / 24101
页数:6
相关论文
共 30 条
[1]   Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion [J].
Bhovad, Priyanka ;
Kaufmann, Joshua ;
Li, Suyi .
EXTREME MECHANICS LETTERS, 2019, 32
[2]   Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators [J].
Chen, Tian ;
Bilal, Osama R. ;
Lang, Robert ;
Daraio, Chiara ;
Shea, Kristina .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[3]   Nanomagnetic encoding of shape-morphing micromachines [J].
Cui, Jizhai ;
Huang, Tian-Yun ;
Luo, Zhaochu ;
Testa, Paolo ;
Gu, Hongri ;
Chen, Xiang-Zhong ;
Nelson, Bradley J. ;
Heyderman, Laura J. .
NATURE, 2019, 575 (7781) :164-+
[4]   Bioinspired spring origami [J].
Faber, Jakob A. ;
Arrieta, Andres F. ;
Studart, Andre R. .
SCIENCE, 2018, 359 (6382) :1386-+
[5]   Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials [J].
Filipov, Evgueni T. ;
Tachi, Tomohiro ;
Paulino, Glaucio H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (40) :12321-12326
[6]   Bioinspired dual-morphing stretchable origami [J].
Kim, Woongbae ;
Byun, Junghwan ;
Kim, Jae-Kyeong ;
Choi, Woo-Young ;
Jakobsen, Kirsten ;
Jakobsen, Joachim ;
Lee, Dae-Young ;
Cho, Kyu-Jin .
SCIENCE ROBOTICS, 2019, 4 (36)
[7]  
Kresling B, 2002, ORIGAMI3, P197
[8]  
Lang R.J, 2017, TWISTS TILINGS TESSE
[9]   Fluid-driven origami-inspired artificial muscles [J].
Li, Shuguang ;
Vogt, Daniel M. ;
Rus, Daniela ;
Wood, Robert J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (50) :13132-13137
[10]   Nonlinear mechanics of non-rigid origami: an efficient computational approach [J].
Liu, K. ;
Paulino, G. H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2206)