SHARP BOUNDS FOR THE GENERAL RANDIC INDEX R-1 OF A GRAPH

被引:2
|
作者
Milovanovic, E. I. [1 ]
Bekakos, P. M. [2 ]
Bekakos, M. P. [3 ]
Milovanovic, I. Z. [1 ]
机构
[1] Fac Elect Engn, A Medvedeva 14,POB 73, Nish 18000, Serbia
[2] Xanthi Univ Technol, Dept Elect & Comp Engn, Xanthi 67100, Thrace, Greece
[3] Democritus Univ Thrace, Dept Elect & Comp Engn, GR-67100 Xanthi, Thrace, Greece
关键词
General Randic index; vertex degree sequence; normalized Laplacian spectrum (of graph);
D O I
10.1216/RMJ-2017-47-1-259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an undirected simple, connected graph with n >= 3 vertices and m edges, with vertex degree sequence d >= d 2 >=....>= d n. The general Randic index is de fi ned by R-1 = Sigma((i,j)subset of E) 1/d(i)d(j) Lower and upper bounds for R-1 are obtained in this paper.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 21 条
  • [1] Sharp bounds for the general Randic index of transformation graphs
    Imran, Muhammad
    Akhter, Shehnaz
    Shaker, Hani
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7787 - 7794
  • [2] On the Bounds of Zeroth-Order General Randic Index
    Matejic, Marjan
    Altindag, Erife Burcu Bozkurt
    Milovanovic, Emina
    Milovanovic, Igor
    FILOMAT, 2022, 36 (19) : 6443 - 6456
  • [3] SURVEY ON THE GENERAL RANDIC INDEX: EXTREMAL RESULTS AND BOUNDS
    Swartz, Elize
    Vetrik, Tomas
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1177 - 1203
  • [4] SHARP BOUNDS ON THE AUGMENTED ZAGREB INDEX OF GRAPH OPERATIONS
    Dehgardi, N.
    Aram, H.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (04): : 509 - 522
  • [5] On the normalized Laplacian energy and general Randic index R_1 of graphs
    Cavers, Michael
    Fallat, Shaun
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) : 172 - 190
  • [6] The exponent in the general Randic index
    Clark, Lane
    Gutman, Ivan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) : 32 - 44
  • [7] General Randic indices of a graph and its line graph
    Liang, Yan
    Wu, Baoyindureng
    OPEN MATHEMATICS, 2023, 21 (01):
  • [8] Trees with maximum general Randic index
    Hu, YM
    Li, XL
    Yuan, Y
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 129 - 146
  • [9] Trees with minimum general Randic index
    Hu, YM
    Li, XL
    Yuan, Y
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 119 - 128
  • [10] On the tree with maximum general Randic Index
    Cui, Risheng
    Jin, Guangzhi
    Jin, Yinglie
    ARS COMBINATORIA, 2014, 113 : 65 - 79