Nonlinear Fano-Resonant Dielectric Metasurfaces

被引:564
作者
Yang, Yuanmu [1 ]
Wang, Wenyi [2 ]
Boulesbaa, Abdelaziz [3 ]
Kravchenko, Ivan I. [3 ]
Briggs, Dayrl P. [3 ]
Puretzky, Alexander [3 ]
Geohegan, David [3 ]
Valentine, Jason [4 ]
机构
[1] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA
基金
美国国家科学基金会;
关键词
Metamaterial; dielectric antenna; Fano resonance; third harmonic generation; ENHANCED 3RD-HARMONIC GENERATION; ALL-OPTICAL CONTROL; 2ND-HARMONIC GENERATION; HARMONIC-GENERATION; SILICON; METAMATERIALS; NANOSTRUCTURES; LIGHT; LASER;
D O I
10.1021/acs.nanolett.5b02802
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Strong nonlinear light-matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. Here, we present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. We measure a third harmonic generation enhancement factor of 1.5 x 10(5) with respect to an unpattemed silicon film and an absolute conversion efficiency of 1.2 x 10(-6) with a peak pump intensity of 3.2 GW cm(-2). The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. The modulation mechanism is studied by pump-probe experiments.
引用
收藏
页码:7388 / 7393
页数:6
相关论文
共 34 条
[1]   All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid [J].
Abb, Martina ;
Albella, Pablo ;
Aizpurua, Javier ;
Muskens, Otto L. .
NANO LETTERS, 2011, 11 (06) :2457-2463
[2]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[3]  
Aouani H, 2014, NAT NANOTECHNOL, V9, P290, DOI [10.1038/nnano.2014.27, 10.1038/NNANO.2014.27]
[4]  
Boyd R.W., 2001, Nonlinear Optical Materials, P6237, DOI DOI 10.1016/B0-08-043152-6/01107-4
[5]  
BOYD RW, 1992, NONLINEAR OPT
[6]   Optical nanoantenna arrays loaded with nonlinear materials [J].
Chen, Pai-Yen ;
Alu, Andrea .
PHYSICAL REVIEW B, 2010, 82 (23)
[7]   Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides [J].
Corcoran, B. ;
Monat, C. ;
Grillet, C. ;
Moss, D. J. ;
Eggleton, B. J. ;
White, T. P. ;
O'Faolain, L. ;
Krauss, T. F. .
NATURE PHOTONICS, 2009, 3 (04) :206-210
[8]   Second harmonic generation from a nanopatterned isotropic nonlinear material [J].
Fan, Wenjun ;
Zhang, Shuang ;
Panoiu, N. -C. ;
Abdenour, A. ;
Krishna, S. ;
Osgood, R. M., Jr. ;
Malloy, K. J. ;
Brueck, S. R. J. .
NANO LETTERS, 2006, 6 (05) :1027-1030
[9]   EFFECTS OF CONFIGURATION INTERACTION ON INTENSITIES AND PHASE SHIFTS [J].
FANO, U .
PHYSICAL REVIEW, 1961, 124 (06) :1866-&
[10]   Spectral Collapse in Ensembles of Metamolecules [J].
Fedotov, V. A. ;
Papasimakis, N. ;
Plum, E. ;
Bitzer, A. ;
Walther, M. ;
Kuo, P. ;
Tsai, D. P. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)