Generalized topological function spaces and a classification of generalized computer topological spaces

被引:3
作者
Georgiou, D. N. [1 ]
Han, Sang-Eon [2 ]
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Fac Liberal Educ, Jeonju Si 561756, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Digital topology; Khalimsky topology; digital continuity; digital homeomorphism; N-compatible; function space; HOMEOMORPHISMS; IMAGE;
D O I
10.2298/FIL1203539G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce several kinds of generalized continuities and homeomorphisms in computer topology and investigate some properties of function spaces of these generalized continuous maps and classify generalized computer topological spaces up to each of these generalized homeomorphisms.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 25 条
[1]  
Alexandroff P., 1937, Mat. Sb, V2, P501
[2]   DIGITALLY CONTINUOUS-FUNCTIONS [J].
BOXER, L .
PATTERN RECOGNITION LETTERS, 1994, 15 (08) :833-839
[3]   Groups of 0-generalized homeomorphisms and the digital line [J].
Dontchev, J ;
Maki, H .
TOPOLOGY AND ITS APPLICATIONS, 1999, 95 (02) :113-128
[4]  
Dunham W., 1977, Kyungpook Math. J., V17, P161
[5]  
Gierz G., 1980, COMPENDIUM CONTINUOU
[6]   The k-homotopic thinning and a torus-like digital image in Zn supercript stop [J].
Han, Sang-Eon .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 31 (01) :1-16
[7]   Continuities and homeomorphisms in computer topology and their applications [J].
Han, Sang-Eon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) :923-952
[8]   Equivalent (k0, k1)-covering and generalized digital lifting [J].
Han, Sang-Eon .
INFORMATION SCIENCES, 2008, 178 (02) :550-561
[9]  
Han Sang-Eon, 2004, [Honam Mathematical Journal, 호남수학학술지], V26, P331
[10]   Strong k-deformation retract and its applications [J].
Han, Sang-Eon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) :1479-1503