Polymer Electret Improves the Performance of the Oxygen-Doped Organic Field-Effect Transistors

被引:7
|
作者
Li, Dongfan [1 ,2 ]
Zhu, Yuanwei [1 ,2 ]
Wei, Peng [1 ,2 ]
Lu, Wanlong [1 ,2 ]
Li, Shengtao [1 ,2 ]
Wang, Steven [3 ]
Xu, Ben Bin [4 ]
Lu, Guanghao [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710054, Peoples R China
[3] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[4] Northumbria Univ, Dept Mech & Construct Engn, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 中国博士后科学基金;
关键词
Organic field-effect transistor; polymer electret; doping; organic semiconductor; CHARGE-CARRIER MOBILITY; STABILITY; ENHANCEMENT; DEPLETION; FILMS;
D O I
10.1109/LED.2020.3026486
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Chemical doping is widely used in the electronic devices. In p-type semiconductor thin films, oxygen doping fills the hole traps and increases hole concentrations, improving the performance of the organic field-effect transistors (OFETs). Due to the low ionization potential for p-type semiconductors, the superfluous holes induced by the oxygen doping degrades the OFETs off-state leakage performance. On the other hand, for p-type semiconductors with high ionization potential (up to 5.5-6.0 eV), the limited oxidation of oxygen is hard to achieve satisfactory doping concentrations to fill the trap states. This refers to the well-known intrinsic incompatibility between the oxygen doping and high-performance OFETs. Herein, a novel strategy is introduced to overcome the incompatibility and achieve high-performance OFETs by using the structural polymer electret. That is, moderate hole concentrations induced by low-pressure (30 Pa) oxygen plasma fill the hole traps within semiconductor. And the built-in field resulted from polymer electret accumulates the holes inside semiconductor near the semiconductor/electret interface, thus improving the OFETs performance. Using a model organic semiconductor with high ionization potential-2,7-didodecyl[1]benzothieno [3,2-b][1]benzothiophene (C12-BTBT) as an example, the high-performance OFETs with field-effectmobility (mu FET) of 3.5 cm(2)V(-1) s(-1), subthreshold-swing(SS) of 110mV decade(-1), on-off ratio of 10(4), and widely-tunable threshold voltage (V-t) are realized at a low voltage below 2 V in the open air.
引用
收藏
页码:1665 / 1668
页数:4
相关论文
共 50 条
  • [31] Organic Field-Effect Transistors for CMOS Devices
    Melzer, Christian
    von Seggern, Heinz
    ORGANIC ELECTRONICS, 2010, 223 : 213 - 257
  • [32] Field-Effect Transistors for Organic CMOS Technology
    Melzer, Christian
    von Seggern, Heinz
    IT-INFORMATION TECHNOLOGY, 2008, 50 (03): : 158 - 166
  • [33] Operational Stability of Organic Field-Effect Transistors
    Bobbert, Peter A.
    Sharma, Abhinav
    Mathijssen, Simon G. J.
    Kemerink, Martijn
    de Leeuw, Dago M.
    ADVANCED MATERIALS, 2012, 24 (09) : 1146 - 1158
  • [34] Organic Field-Effect Transistors by a Solvent Vapor Annealing Process
    Liu, Chuan
    Khim, Dong-Yoon
    Noh, Yong-Young
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (02) : 1476 - 1493
  • [35] Synthesis of π-extended oxacenes and their application to organic field-effect transistors
    Hayasaka, Chikara
    Nagano, Shusaku
    Nakano, Koji
    ORGANIC ELECTRONICS, 2022, 100
  • [36] Donor-Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report
    Kim, Minjun
    Ryu, Seung Un
    Park, Sang Ah
    Choi, Kyoungwon
    Kim, Taehyun
    Chung, Dasol
    Park, Taiho
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (20)
  • [37] Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors
    Li, Mengmeng
    Wang, Jiawei
    Xu, Wanzhen
    Li, Ling
    Pisula, Wojciech
    Janssen, Rene A. J.
    Liu, Ming
    PROGRESS IN POLYMER SCIENCE, 2021, 117
  • [38] Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors
    Hu, Yuanyuan
    Rengert, Zachary D.
    McDowell, Caitlin
    Ford, Michael J.
    Wang, Ming
    Karki, Akchheta
    Lill, Alexander T.
    Bazan, Guillermo C.
    Thuc-Quyen Nguyen
    ACS NANO, 2018, 12 (04) : 3938 - 3946
  • [39] A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors
    Kim, Nam-Koo
    Shin, Eun-Sol
    Noh, Yong-Young
    Kim, Dong-Yu
    ORGANIC ELECTRONICS, 2018, 55 : 6 - 14
  • [40] Recent progress of high performance organic thin film field-effect transistors
    Meng, Qing
    Dong, Huanli
    Hu, Wenping
    Zhu, Daoben
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (32) : 11708 - 11721