UNSTRUCTURED MESHES;
MAXIMUM PRINCIPLE;
POLYGONAL MESHES;
SCHEME;
CONVERGENCE;
OPERATORS;
GRIDS;
D O I:
10.1007/s00211-013-0545-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We present a nonlinear technique to correct a general finite volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many finite volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding approximate solutions converge to the continuous one as the size of the mesh tends to zero. Finally we present numerical results showing that these corrections suppress local minima produced by the original finite volume scheme.
机构:
Univ Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, FranceUniv Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, France
Droniou, Jerome
;
Le Potier, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DEN, DM2S, SFME, F-91191 Gif Sur Yvette, FranceUniv Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, France
机构:
Univ Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, FranceUniv Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, France
Droniou, Jerome
;
Le Potier, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DEN, DM2S, SFME, F-91191 Gif Sur Yvette, FranceUniv Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, France