Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations

被引:61
作者
Cances, Clement [1 ]
Cathala, Mathieu [2 ]
Le Potier, Christophe [3 ]
机构
[1] LJLL UPMC Paris 06, F-75005 Paris, France
[2] Univ Montpellier 2, Inst Math & Modelisat Montpellier, CC051, F-34095 Montpellier, France
[3] CEA Saclay, LMEC, STMF, DEN,DM2S, F-91191 Gif Sur Yvette, France
关键词
UNSTRUCTURED MESHES; MAXIMUM PRINCIPLE; POLYGONAL MESHES; SCHEME; CONVERGENCE; OPERATORS; GRIDS;
D O I
10.1007/s00211-013-0545-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a nonlinear technique to correct a general finite volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many finite volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding approximate solutions converge to the continuous one as the size of the mesh tends to zero. Finally we present numerical results showing that these corrections suppress local minima produced by the original finite volume scheme.
引用
收藏
页码:387 / 417
页数:31
相关论文
共 21 条
[1]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[2]  
Agelas L., 2010, INT J FINITE, V7
[3]   Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes [J].
Agelas, Leo ;
Masson, Roland .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) :1007-1012
[4]   A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media [J].
Agelas, Leo ;
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :673-676
[5]   Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes [J].
Burman, E ;
Ern, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :641-646
[6]  
Despres B., 2012, HAL00714781
[7]   CONSTRUCTION AND CONVERGENCE STUDY OF SCHEMES PRESERVING THE ELLIPTIC LOCAL MAXIMUM PRINCIPLE [J].
Droniou, Jerome ;
Le Potier, Christophe .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :459-490
[8]   A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :326-353
[9]   Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces [J].
Eymard, R. ;
Gallouet, T. ;
Herbin, R. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) :1009-1043
[10]   A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids [J].
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (10) :659-662