Conservation laws for optical solitons with spatio-temporal dispersion

被引:21
作者
Savescu, Michelle [1 ,2 ]
Johnson, Stephen [1 ,3 ]
Kara, Abdul H. [4 ]
Crutcher, Sihon H. [5 ]
Kohl, Russell [6 ]
Biswas, Anjan [1 ,7 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Kuztown Univ Penn, Dept Math, Kutztown, PA 19530 USA
[3] Lake Forest High Sch, Felton, DE 19943 USA
[4] Univ Witwatersrand, Sch Math, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
[5] US Army Res Dev & Engn Command, Redstone Arsenal, AL 35898 USA
[6] Univ Maryland Eastern Shore, Dept Math & Comp Sci, Princess Anne, MD 21853 USA
[7] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
birefringence; integrability; solitons; EQUATION; PERTURBATION;
D O I
10.1080/09205071.2013.863716
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The conservation laws for optical solitons with spatio-temporal dispersion are obtained in this paper. There are three conserved quantities that are reported in this paper. They are the power, linear momentum, and the Hamiltonian. The conserved quantities, from their respective densities, are obtained from 1-soliton solution that was reported earlier. Five types of nonlinear media are taken into account.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 15 条
[1]   Impedance matching in RF excited fast axial flow CO2 laser: The role of the capacitance due to laser head [J].
Bhagat, M. S. ;
Biswas, A. K. ;
Rana, L. B. ;
Kukreja, L. M. .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2217-2222
[2]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[3]   OPTICAL SOLITON PERTURBATION IN NANOFIBERS WITH IMPROVED NONLINEAR SCHRODINGER'S EQUATION BY SEMI-INVERSE VARIATIONAL PRINCIPLE [J].
Biswas, Anjan ;
Milovic, Daniela ;
Savescu, Michelle ;
Mahmood, Mohammad F. ;
Khan, Kaisar R. ;
Kohl, Russell .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
[4]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[5]   Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation [J].
Geng, Xianguo ;
Lv, Yanyan .
NONLINEAR DYNAMICS, 2012, 69 (04) :1621-1630
[6]  
Jovanoski Z, 2001, J MOD OPTIC, V48, P1179, DOI 10.1080/09500340010028071
[7]   Optical soliton perturbation in a non-Kerr law media [J].
Kohl, Russell ;
Biswas, Anjan ;
Milovic, Daniela ;
Zerrad, Essaid .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) :647-662
[8]   Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method [J].
Kumar, Sachin ;
Singh, K. ;
Gupta, R. K. .
PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01) :41-60
[9]   An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons [J].
Lenells, J. ;
Fokas, A. S. .
INVERSE PROBLEMS, 2009, 25 (11)
[10]   Dressing for a Novel Integrable Generalization of the Nonlinear Schrodinger Equation [J].
Lenells, Jonatan .
JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (06) :709-722