The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold in dimension seven

被引:11
|
作者
Ivanov, S. [1 ,3 ]
Petkov, A. [1 ]
Vassilev, D. [2 ]
机构
[1] Univ Sofia, Fac Math & Informat, Sofia 1164, Bulgaria
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] Bulgarian Acad Sci, Inst Math & Informat, BG-1040 Sofia, Bulgaria
关键词
Quaternionic contact structures; Lichnerowicz inequality; Paneitz operator; P-function; 3-Sasakian; POSITIVE EIGENVALUE; DIRICHLET PROBLEM; CR; SUBLAPLACIAN;
D O I
10.1016/j.na.2013.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A version of Lichnerowicz' theorem giving a lower bound of the eigenvalues of the sub-Laplacian on a compact seven dimensional quaternionic contact manifold is proved assuming a lower bound on the Sp(1) Sp(1)-components of the qc-Ricci curvature and the positivity of the P-function of any eigenfunction. The introduced P-function and nonlinear C-operator are motivated by the Paneitz operators defined previously in the Riemannian and CR settings and the P-function used in the theory of elliptic partial differential equations. It is shown that in the case of a seven dimensional compact 3-Sasakian manifold the lower bound is reached iff the quaternionic contact manifold is the round 3-Sasakian sphere. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 50 条