Nuclear export signal in CDC25B

被引:15
作者
Uchida, S
Ohtsubo, M
Shimura, M
Hirata, M
Nakagama, H
Matsunaga, T
Yoshida, M
Ishizaka, Y
Yamashita, K
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Life Sci, Kanazawa, Ishikawa 9201192, Japan
[2] Kurume Univ, Inst Life Sci, Kurume, Fukuoka 8390861, Japan
[3] Int Med Ctr Japan, Div Intractable Dis, Shinjyuku Ku, Tokyo 1628655, Japan
[4] Kyushu Univ, Fac Dent Sci, Lab Mol & Cellular Biochem, Fukuoka 8128582, Japan
[5] Kyushu Univ, Stn Collaborat Res, Fukuoka 8128582, Japan
[6] Natl Canc Ctr, Res Inst, Div Biochem, Chuo Ku, Tokyo 1040045, Japan
[7] Kanazawa Univ, Fac Pharmaceut Sci, Lab Mol Human Genet, Kanazawa, Ishikawa 9200934, Japan
[8] RIKEN, Chem Genet Lab, Wako, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
CDC25B; nuclear export signal; subcellular localization; GFP; 14-3-3; leptomycin B;
D O I
10.1016/j.bbrc.2004.02.039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CDC25B is a dual-specificity phosphatase that activates CDK1/cyclin B. The nuclear exclusion of CDC25B is controlled by the binding of 14-3-3 to the nuclear export signal (NES) of CDC25B, which was reported to be amino acids H28 to L40 in the N-terminal region of CDC25B. In studying the subcellular localization of CDC2513, we found a functional NES at V52 to L65, the sequence of which is VTTLTQTMHDLAGL, where bold letters are leucine or hydrophobic amino acids frequently seen in an NES. The deletion of this NES sequence caused the mutant protein to locate exclusively in nuclei, while NES-fused GFP was detected in the cytoplasm. Moreover, the introduction of point mutations at some of the critical amino acids impaired cytoplasmic localization. Treatment with leptomycin B, a potent inhibitor of CRM1/exportin1, disrupted the cytoplasmic localization of both Flag-tagged CDC25B and NES-fused GFP. From these results, we concluded that the sequence we found is a bona fide NES of CDC2513. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 232
页数:7
相关论文
共 38 条
[1]   Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control? [J].
Baldin, V ;
Cans, C ;
SupertiFurga, G ;
Ducommun, B .
ONCOGENE, 1997, 14 (20) :2485-2495
[2]   14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport [J].
Brunet, A ;
Kanai, F ;
Stehn, J ;
Xu, J ;
Sarbassova, D ;
Frangioni, JV ;
Dalal, SN ;
DeCaprio, JA ;
Greenberg, ME ;
Yaffe, MB .
JOURNAL OF CELL BIOLOGY, 2002, 156 (05) :817-828
[3]   Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase [J].
Bulavin, DV ;
Higashimoto, Y ;
Popoff, IJ ;
Gaarde, WA ;
Basrur, V ;
Potapova, O ;
Appella, E ;
Fornace, AJ .
NATURE, 2001, 411 (6833) :102-107
[4]   Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase [J].
Chen, MS ;
Hurov, J ;
White, LS ;
Woodford-Thomas, T ;
Piwnica-WormS, H .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (12) :3853-3861
[5]   Differential contribution of inhibitory phosphorylation of CDC2 and CDK2 for unperturbed cell cycle control and DNA integrity checkpoints [J].
Chow, JPH ;
Siu, WY ;
Ho, HTB ;
Ma, KHT ;
Ho, CC ;
Poon, RYC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :40815-40828
[6]  
Dalal SN, 1999, MOL CELL BIOL, V19, P4465
[7]   Regulation of CDC25B phosphatases subcellular localization [J].
Davezac, N ;
Baldin, V ;
Gabrielli, B ;
Forrest, A ;
Theis-Febvre, N ;
Yashida, M ;
Ducommun, B .
ONCOGENE, 2000, 19 (18) :2179-2185
[8]   Regulating mammalian checkpoints through Cdc25 inactivation [J].
Donzelli, M ;
Draetta, GF .
EMBO REPORTS, 2003, 4 (07) :671-677
[9]   Cdc25B activity is regulated by 14-3-3 [J].
Forrest, A ;
Gabrielli, B .
ONCOGENE, 2001, 20 (32) :4393-4401
[10]   Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1 [J].
Furnari, B ;
Blasina, A ;
Boddy, MN ;
McGowan, CH ;
Russell, P .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (04) :833-845