Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing

被引:10
作者
Chen, Geng [1 ,2 ,3 ]
Zhang, Pei [2 ,3 ]
Li, Ke [4 ]
Wee, Chong-Yaw [2 ,3 ]
Wu, Yafeng [1 ]
Shen, Dinggang [2 ,3 ,5 ]
Yap, Pew-Thian [2 ,3 ]
机构
[1] Northwestern Polytech Univ, Data Proc Ctr, Xian 712000, Peoples R China
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
[4] Beihang Univ, Fundamental Sci Ergon & Environm Control Lab, Beijing 100191, Peoples R China
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
BRAIN; CONNECTIVITY; NETWORKS; IDENTIFICATION; TRACKING;
D O I
10.1038/srep37847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired. This is however not always available in practice. In this paper, we propose to improve ODF estimation by using inter-subject image correlation. Specifically, we demonstrate that diffusion-weighted images acquired from different subjects can be transformed to the space of a target subject to drastically increase the number of angular samples to improve ODF estimation. This is largely due to the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. To reorient the diffusion signals, we propose a new spatial normalization method that directly acts on diffusion signals using local affine transforms. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.
引用
收藏
页数:13
相关论文
共 37 条
  • [1] ODF RECONSTRUCTION IN Q-BALL IMAGING WITH SOLID ANGLE CONSIDERATION
    Aganj, Iman
    Lenglet, Christophe
    Sapiro, Guillermo
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1398 - 1401
  • [2] Spatial transformations of diffusion tensor magnetic resonance images
    Alexander, DC
    Pierpaoli, C
    Basser, PJ
    Gee, JC
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) : 1131 - 1139
  • [3] A review of image denoising algorithms, with a new one
    Buades, A
    Coll, B
    Morel, JM
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (02) : 490 - 530
  • [4] Noise removal in magnetic resonance diffusion tensor imaging
    Chen, B
    Hsu, EW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) : 393 - 401
  • [5] Chen Geng, 2016, Med Image Comput Comput Assist Interv, V9902, P587, DOI 10.1007/978-3-319-46726-9_68
  • [6] Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer
    Chen, Geng
    Zhang, Pei
    Li, Ke
    Wee, Chong-Yaw
    Wu, Yafeng
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. COMPUTATIONAL DIFFUSION MRI, 2016, : 145 - 157
  • [7] Commowick O, 2012, LECT NOTES COMPUT SC, V7512, P476, DOI 10.1007/978-3-642-33454-2_59
  • [8] An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
    Coupe, Pierrick
    Yger, Pierre
    Prima, Sylvain
    Hellier, Pierre
    Kervrann, Charles
    Barillot, Christian
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 425 - 441
  • [9] Descoteaux M, 2008, LECT NOTES COMPUT SC, V5242, P122, DOI 10.1007/978-3-540-85990-1_15
  • [10] Dhollander T., 2010, MICCAI CDMRI WORKSH, P73