Phase topology of one irreducible integrable problem in the dynamics of a rigid body

被引:8
作者
Ryabov, P. E. [1 ]
机构
[1] Financial Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
completely integrable Hamiltonian system; spectral curve; moment map; bifurcation diagram; bifurcation of Liouville tori; 2 CONSTANT FIELDS; BIFURCATION DIAGRAMS; KOWALEWSKI TOP; KOWALEVSKI; SEPARATION; INVARIANT; VARIABLES; FREEDOM;
D O I
10.1007/s11232-013-0087-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the integrable system with three degrees of freedom for which V. V. Sokolov and A. V. Tsiganov specified the Lax pair. The Lax representation generalizes the L-A pair found by A. G. Reyman and M. A. Semenov-Tian-Shansky for the Kovalevskaya gyrostat in a double field. We give explicit formulas for the additional first integrals K and G (independent almost everywhere), which are functionally related to the coefficients of the spectral curve for the Sokolov-Tsiganov L-A pair. Using this form of the additional integrals K and G and the Kharlamov parametric reduction, we analytically present two invariant four-dimensional submanifolds where the induced dynamical system is Hamiltonian (almost everywhere) with two degrees of freedom. The system of equations specifying one of the invariant submanifolds is a generalization of the invariant relations for the integrable Bogoyavlensky case (rotation of a magnetized rigid body in homogeneous gravitational and magnetic fields). We use the method of critical subsystems to describe the phase topology of the whole system. For each subsystem, we construct the bifurcation diagrams and specify the bifurcations of the Liouville tori both inside the subsystems and in the whole system.
引用
收藏
页码:1000 / 1015
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1985, MATH USSRIZVESTIYA, DOI 10.1070/IM1985v025n0
[2]  
[Anonymous], 2005, DYNAMICS RIGID BODY
[3]   THE KOWALEWSKI TOP 99 YEARS LATER - A LAX PAIR, GENERALIZATIONS AND EXPLICIT SOLUTIONS [J].
BOBENKO, AI ;
REYMAN, AG ;
SEMENOVTIANSHANSKY, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) :321-354
[4]  
Bolsinov A.V., 1991, ADV SOVIET MATH, V6, P147
[5]  
Bolsinov A. V., 1999, INTEGRABLE HAMILTONI, V1
[6]  
Bolsinov A. V., 1999, INTEGRABLE HAMILTONI, V2
[7]  
Borisov A. V., 2003, MODERN METODS THEORY
[8]   A BORDISM THEORY FOR INTEGRABLE NONDEGENERATE HAMILTONIAN-SYSTEMS WITH 2-DEGREES OF FREEDOM - A NEW TOPOLOGICAL INVARIANT OF HIGHER-DIMENSIONAL INTEGRABLE SYSTEMS [J].
FOMENKO, AT .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (01) :731-759
[9]  
Fomenko AT, 1991, ADV SOVMATH, V6, P1
[10]   Separation of variables in the generalized 4th appelrot class [J].
Kharlamov, M. P. .
REGULAR & CHAOTIC DYNAMICS, 2007, 12 (03) :267-280