On the Weighted Mixed Almost Unbiased Ridge Estimator in Stochastic Restricted Linear Regression

被引:6
作者
Liu, Chaolin [1 ]
Yang, Hu [1 ]
Wu, Jibo [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
PRINCIPAL COMPONENT REGRESSION; LIU ESTIMATOR; ERROR; BIAS;
D O I
10.1155/2013/902715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the weighted mixed almost unbiased ridge estimator (WMAURE) based on the weighted mixed estimator (WME) (Trenkler and Toutenburg 1990) and the almost unbiased ridge estimator (AURE) (Akdeniz and Erol 2003) in linear regression model. We discuss superiorities of the new estimator under the quadratic bias (QB) and the mean square error matrix (MSEM) criteria. Additionally, we give a method about how to obtain the optimal values of parameters k and w. Finally, theoretical results are illustrated by a real data example and a Monte Carlo study.
引用
收藏
页数:10
相关论文
共 23 条
[1]   Mean squared error matrix comparisons of some biased estimators in linear regression [J].
Akdeniz, F ;
Erol, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (12) :2389-2413
[2]   ON THE ALMOST UNBIASED GENERALIZED LIU ESTIMATOR UNBIASED ESTIMATION OF THE BIAS AND MSE [J].
AKDENIZ, F ;
KACIRANLAR, S .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (07) :1789-1797
[3]  
[Anonymous], 2008, LINEAR MODELS GEN LE
[4]   COMBINING RIDGE AND PRINCIPAL COMPONENT REGRESSION - A MONEY DEMAND ILLUSTRATION [J].
BAYE, MR ;
PARKER, DF .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (02) :197-205
[6]  
FAREBROTHER RW, 1976, J ROY STAT SOC B MET, V38, P248
[7]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[8]   Improvement of the Liu estimator in linear regression model [J].
Hubert, MH ;
Wijekoon, P .
STATISTICAL PAPERS, 2006, 47 (03) :471-479
[9]   Combining the Liu estimator and the principal component regression estimator [J].
Kaçiranlar, S ;
Sakallioglu, S .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (12) :2699-2705
[10]   A CLASS OF ALMOST UNBIASED AND EFFICIENT ESTIMATORS OF REGRESSION-COEFFICIENTS [J].
KADIYALA, K .
ECONOMICS LETTERS, 1984, 16 (3-4) :293-296