Local strong solutions to the stochastic compressible Navier-Stokes system

被引:31
作者
Breit, Dominic [1 ]
Feireisl, Eduard [2 ]
Hofmanova, Martina [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Acad Sci Czech Republ, Inst Math, Prague, Czech Republic
[3] Tech Univ Berlin, Inst Math, Berlin, Germany
基金
欧洲研究理事会;
关键词
Compressible fluids; local strong solutions; Navier-Stokes system; stochastic forcing; EULER EQUATIONS; GLOBAL EXISTENCE; MARTINGALE SOLUTIONS; SMOOTH SOLUTIONS; FLUIDS; DRIVEN; FLOWS; NOISE;
D O I
10.1080/03605302.2018.1442476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes system describing the motion of a compressible viscous fluid driven by a nonlinear multiplicative stochastic force. We establish local in time existence (up to a positive stopping time) of a unique solution, which is strong in both PDE and probabilistic sense. Our approach relies on rewriting the problem as a symmetric hyperbolic system augmented by partial diffusion, which is solved via a suitable approximation procedure. We use the stochastic compactness method and the Yamada-Watanabe type argument based on the Gyongy-Krylov characterization of convergence in probability. This leads to the existence of a strong (in the PDE sense) pathwise solution. Finally, we use various stopping time arguments to establish the local existence of a unique strong solution to the original problem.
引用
收藏
页码:313 / 345
页数:33
相关论文
共 40 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]  
[Anonymous], 1992, ENCY MATH APPL
[3]   Local solutions for stochastic Navier stokes equations [J].
Bensoussan, A ;
Frehse, J .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :241-273
[4]  
Bensoussan A., 1973, J. Funct. Anal., V13, P195
[5]   Martingale solutions for stochastic Euler equations [J].
Bessaih, H .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1999, 17 (05) :713-725
[6]   2-D Euler equation perturbed by noise [J].
Bessaih, Hakima ;
Flandoli, Franco .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :35-54
[7]   Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (02) :443-473
[8]  
Breit D, 2016, INDIANA U MATH J, V65, P1183
[9]   Incompressible Limit for Compressible Fluids with Stochastic Forcing [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (02) :895-926
[10]   Stochastic nonlinear beam equations [J].
Brzezniak, Z ;
Maslowski, B ;
Seidler, J .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) :119-149