An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion

被引:74
作者
Wu, Bo [1 ]
Huang, Bo [2 ]
Zhang, Liangpei [3 ]
机构
[1] Fuzhou Univ, Minist Educ, Key Lab Spatial Data Min & Informat Sharing, Fuzhou 350002, Peoples R China
[2] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 12期
关键词
Dictionary perturbation; error bound regularization; multitemporal image; sparse representation; spatiotemporal reflectance fusion (SPTM); IMAGE SUPERRESOLUTION; LANDSAT; ALGORITHM; METRICS; SPACE; MODEL;
D O I
10.1109/TGRS.2015.2448100
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper attempts to demonstrate that addressing the dictionary perturbations and the individual representation of the coupled images can generally result in positive effects with respect to sparse-representation-based spatiotemporal reflectance fusion (SPTM). We propose to adapt the dictionary perturbations with an error-bound-regularized method and formulate the dictionary perturbations to be a sparse elastic net regression problem. Moreover, we also utilize semi-coupled dictionary learning (SCDL) to address the differences between the high-spatialresolution and low-spatial-resolution images, and we propose the error-bound-regularized SCDL (EBSCDL) model by also imposing an error bound regularization. Two data sets of Landsat Enhanced Thematic Mapper Plus data and Moderate Resolution Imaging Spectroradiometer acquisitions were used to validate the proposed models. The spatial and temporal adaptive reflectance fusion model and the original SPTM were also implemented and compared. The experimental results consistently show the positive effect of the proposed methods for SPTM, with smaller differences in scatter plot distribution and higher peak-signal-to-noise ratio and structural similarity index measures.
引用
收藏
页码:6791 / 6803
页数:13
相关论文
共 30 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2012, J MACHINE LEARNING R
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Structural similarity quality metrics in a coding context: Exploring the space of realistic distortions [J].
Brooks, Alan C. ;
Zhao, Xiaonan ;
Pappas, Thrasyvoulos N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (08) :1261-1273
[5]   Parameter estimation in the presence of bounded data uncertainties [J].
Chandrasekaran, S ;
Golub, GH ;
Gu, M ;
Sayed, AH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :235-252
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[8]  
Gong Boqing, 2013, INT C MACH LEARN PML
[9]  
Gretton A., 2006, P ADV NEUR INF PROC, P513
[10]   Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model [J].
Hilker, Thomas ;
Wulder, Michael A. ;
Coops, Nicholas C. ;
Seitz, Nicole ;
White, Joanne C. ;
Gao, Feng ;
Masek, Jeffrey G. ;
Stenhouse, Gordon .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (09) :1988-1999