Using a Mathematical Programming Modeling Language for Optimal CTA

被引:0
|
作者
Castro, Jordi [1 ,2 ]
Baena, Daniel [2 ]
机构
[1] Univ Politecn Cataluna, Dept Stat & Operat Res, Jordi Girona 1-3, ES-08034 Barcelona, Catalonia, Spain
[2] Inst Estadist Catalunya, Barcelona 08003, Catalonia, Spain
关键词
statistical disclosure control; controlled tabular adjustment; mixed-integer linear programming; Benders decomposition;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Minimum-distance controlled tabular adjustment methods (CTA) have been formulated as an alternative to the cell suppression problem (CSP) for tabular data. CTA formulates an optimization problem with fewer variables and constraints than CSP. However, the inclusion of binary decisions about protection sense of sensitive cells (optimal CTA) in the formulation, still results in a mixed integer-linear problem. This work shows how mathematical programming modeling languages can be used to develop a prototype for optimal CTA based on Benders method. Preliminary results are reported for some medium size two-dimensional tables. For this type of tables, the approach is competitive with other general-purpose algorithms implemented in commercial solvers.
引用
收藏
页码:1 / +
页数:3
相关论文
共 50 条
  • [1] A MODELING LANGUAGE FOR MATHEMATICAL-PROGRAMMING
    FOURER, R
    GAY, DM
    KERNIGHAN, BW
    MANAGEMENT SCIENCE, 1990, 36 (05) : 519 - 554
  • [2] A Structure Conveying Parallelizable Modeling Language for Mathematical Programming
    Grothey, Andreas
    Hogg, Jonathan
    Woodsend, Kristian
    Colombo, Marco
    Gondzio, Jacek
    PARALLEL SCIENTIFIC COMPUTING AND OPTIMIZATION: ADVANCES AND APPLICATIONS, 2009, 27 : 145 - 156
  • [3] A modular mathematical programming language
    Prather, RE
    ACM SIGPLAN NOTICES, 1998, 33 (03) : 38 - 56
  • [4] Optimal timing of joint replacement using mathematical programming and stochastic programming models
    Baruch Keren
    Joseph S. Pliskin
    Health Care Management Science, 2011, 14 : 361 - 369
  • [5] A Modular Mathematical Programming Language
    Trinity University, San Antonio, TX 78212, United States
    SIGPLAN Not, 3 (38-50):
  • [6] Optimal timing of joint replacement using mathematical programming and stochastic programming models
    Keren, Baruch
    Pliskin, Joseph S.
    HEALTH CARE MANAGEMENT SCIENCE, 2011, 14 (04) : 361 - 369
  • [7] MATHEMATICAL PROGRAMMING FOR OPTIMAL DESIGN
    LASDON, LS
    WAREN, AD
    ELECTRO-TECHNOLOGY, 1967, 80 (05): : 53 - &
  • [8] Optimal power flow solution using fuzzy mathematical programming
    Terasawa, Yoshinori
    Iwamoto, Shinichi
    Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 1988, 108 (03): : 46 - 54
  • [9] Optimal reconfiguration of electrical distribution systems using mathematical programming
    Borges M.C.O.
    Franco J.F.
    Rider M.J.
    Journal of Control, Automation and Electrical Systems, 2014, 25 (01) : 103 - 111
  • [10] Optimal PMU placement for modeling power grid observability with mathematical programming methods
    Almunif, Anas
    Fan, Lingling
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (02)