A Priori and a Posteriori Error Estimates for H(div)-Elliptic Problem with Interior Penalty Method

被引:1
作者
Zeng, Yuping [1 ]
Chen, Jinru [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
关键词
Discontinuous Galerkin method; H(div)-elliptic problem; a priori error estimate; a posteriori error estimate; DISCONTINUOUS GALERKIN METHODS; MIXED FINITE-ELEMENTS; APPROXIMATION; DISCRETIZATIONS; H(DIV);
D O I
10.4208/cicp.040412.071112a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose and analyze the interior penalty discontinuous Galerkin method for H(div)-elliptic problem. An optimal a priori error estimate in the energy norm is proved. In addition, a residual-based a posteriori error estimator is obtained. The estimator is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to demonstrate the effectiveness of our method.
引用
收藏
页码:753 / 779
页数:27
相关论文
共 35 条
[11]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[12]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[13]   1ST-ORDER SYSTEM LEAST-SQUARES FOR 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS .1. [J].
CAI, Z ;
LAZAROV, R ;
MANTEUFFEL, TA ;
MCCORMICK, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1785-1799
[14]   Design and convergence of AFEM in H(DIV) [J].
Cascon, J. Manuel ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (11) :1849-1881
[15]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[16]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[17]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[18]   Nodal auxiliary space preconditioning in H(curl) and H(div) spaces [J].
Hiptmair, Ralf ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2483-2509
[19]   Interior penalty method for the indefinite time-harmonic Maxwell equations [J].
Houston, P ;
Perugia, I ;
Schneebeli, A ;
Schötzau, D .
NUMERISCHE MATHEMATIK, 2005, 100 (03) :485-518
[20]   Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems [J].
Houston, Paul ;
Schoetzau, Dominik ;
Wihler, Thomas P. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01) :33-62