Workforce Shortage for Retinopathy of Prematurity Care and Emerging Role of Telehealth and Artificial Intelligence

被引:20
作者
Barrero-Castillero, Alejandra [1 ,2 ]
Corwin, Brian K. [3 ]
VanderVeen, Deborah K. [4 ]
Wang, Jason C. [5 ]
机构
[1] Beth Israel Deaconess Med Ctr, Div Neonatol, 330 Brookline Ave,Rose Bldg Room 308, Boston, MA 02215 USA
[2] Boston Childrens Hosp, Div Newborn Med, Boston, MA USA
[3] Cleveland Clin Fdn, Imaging Inst, Dept Radiol, 9500 Euclid Ave L10, Cleveland, OH 44195 USA
[4] Boston Childrens Hosp, Dept Ophthalmol, 300 Longwood Ave,Fegan 4, Boston, MA 02115 USA
[5] Stanford Univ, Ctr Policy Outcomes & Prevent, Sch Med, 117 Encina Commons, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Neonatal intensive care unit; Premature infant; Retinopathy of prematurity; Telemedicine; Very-low-birthweight; POSTNATAL WEIGHT-GAIN; PLUS DISEASE; BIRTH-WEIGHT; SCREENING EXAMINATION; RETINAL PHOTOGRAPHY; PRETERM INFANTS; TELEMEDICINE; PREDICTION; AGREEMENT; DIAGNOSIS;
D O I
10.1016/j.pcl.2020.04.012
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Retinopathy of prematurity (ROP) is the leading cause of childhood blindness in very-low-birthweight and very preterm infants in the United States. With improved survival of smaller babies, more infants are at risk for ROP, yet there is an increasing shortage of providers to screen and treat ROP. Through a literature review of new and emerging technologies, screening criteria, and analysis of a national survey of pediatric ophthalmologists and retinal specialists, the authors found the shortage of ophthalmology workforce for ROP a serious and growing concern. When used appropriately, emerging technologies have the potential to mitigate gaps in the ROP workforce.
引用
收藏
页码:725 / +
页数:10
相关论文
共 56 条
[31]  
Koberlein J, 2013, BMJ OPEN, V3
[32]   Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs [J].
Larson, David B. ;
Chen, Matthew C. ;
Lungren, Matthew P. ;
Halabi, Safwan S. ;
Stence, Nicholas V. ;
Langlotz, Curtis P. .
RADIOLOGY, 2018, 287 (01) :313-322
[33]   Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicentre field study [J].
Lorenz, Birgit ;
Spasovska, Katerina ;
Elflein, Heike ;
Schneider, Nico .
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2009, 247 (09) :1251-1262
[34]   The Epidemiology of Retinopathy of Prematurity in the United States [J].
Ludwig, Cassie A. ;
Chen, Tiffany A. ;
Hernandez-Boussard, Tina ;
Moshfeghi, Andrew A. ;
Moshfeghi, Darius M. .
OPHTHALMIC SURGERY LASERS & IMAGING RETINA, 2017, 48 (07) :553-563
[35]  
Moshfeghi DM, 2018, CURR OPIN OPHTHALMOL, V2, P158
[36]   Impact of retinopathy of prematurity screening examination on cardiorespiratory indices - A comparison of indirect ophthalmoscopy and retcam imaging [J].
Mukherjee, Achyut N. ;
Watts, Patrick ;
Al-Madfai, Hasan ;
Manoj, Bat ;
Roberts, Dawn .
OPHTHALMOLOGY, 2006, 113 (09) :1547-1552
[37]   Predicting long-term visual outcome in children with birth weight under 1001 g [J].
O'Connor, Anna R. ;
Spencer, Rand ;
Birch, Eileen E. .
JOURNAL OF AAPOS, 2007, 11 (06) :541-545
[38]   Long-term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity [J].
O'Connor, AR ;
Stephenson, T ;
Johnson, A ;
Tobin, MJ ;
Moseley, MJ ;
Ratib, S ;
Ng, Y ;
Fielder, AR .
PEDIATRICS, 2002, 109 (01) :12-18
[39]   Survival of Infants Born at Periviable Gestational Ages [J].
Patel, Ravi Mangal ;
Rysavy, Matthew A. ;
Bell, Edward F. ;
Tyson, Jon E. .
CLINICS IN PERINATOLOGY, 2017, 44 (02) :287-+
[40]   Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J].
Poplin, Ryan ;
Varadarajan, Avinash V. ;
Blumer, Katy ;
Liu, Yun ;
McConnell, Michael V. ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (03) :158-164