GENERALIZED INVEX SETS AND PREINVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS

被引:18
作者
Agarwal, R. P. [1 ,2 ]
Ahmad, I. [1 ,3 ]
Iqbal, Akhlad [4 ]
Ali, Shahid [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, POB 728, Dhahran 31261, Saudi Arabia
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] BITS Pilani Hyderabad Compus, Dept Math, Hyderabad 500078, Andhra Pradesh, India
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 05期
关键词
Geodesic alpha-Invex sets; alpha-Invex functions; Geodesic alpha-Preinvex functions; Riemannian manifolds;
D O I
10.11650/twjm/1500406792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a geodesic alpha-invex subset of a Riemannian manifold is introduced. Geodesic alpha-invex and alpha-preinvex functions on a geodesic alpha-invex set with respect to particular maps are also defined. Further, we study the relationships between geodesic alpha-invex and alpha-preinvex functions on Riemannian manifolds. Some results of a non smooth geodesic alpha-preinvex function are also discussed using proximal subdifferentiation. At the end, mean value inequality and the mean value theorem in alpha-invexity analysis are extended to Cartan-Hadamard manifolds. Our results extend and generalize the known results in the literature.
引用
收藏
页码:1719 / 1732
页数:14
相关论文
共 16 条
[1]   Mean value in invexity analysis [J].
Antczak, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1473-1484
[2]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[3]   Invex sets and preinvex functions on Riemannian manifolds [J].
Barani, A. ;
Pouryayevali, M. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :767-779
[4]  
Ferrara M, 2006, BALK J GEOM APPL, V11, P80
[5]   Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds [J].
Ferreira, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) :587-597
[6]   Proximal point algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
OPTIMIZATION, 2002, 51 (02) :257-270
[7]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[8]  
Jeyakumar V., 1985, Methods of Operations Research, P109
[9]  
Lang S., 1999, GRADUATE TEXTS MATH
[10]   WEAK SHARP MINIMA ON RIEMANNIAN MANIFOLDS [J].
Li, Chong ;
Mordukhovich, Boris S. ;
Wang, Jinhua ;
Yao, Jen-Chih .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1523-1560