On the Modified Korteweg-De Vries Equation

被引:31
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel [2 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Tokyo 1628601, Japan
[2] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
关键词
modified Korteweg-de Vries equation; large time asymptotics;
D O I
10.1023/A:1012953917956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the large time asymptotic behavior of solutions to the Cauchy problem for the modified Korteweg-de Vries equation u(t) + a(t)(u(3))(x) + 1/3 u(xxx) = 0, (t, x) epsilon R x R, with initial data u(0, x) = u(0)(x), x epsilon R. We assume that the coefficient a(t) epsilon C-1(R) is real, bounded and slowly varying function, such that vertical bar a'(t)vertical bar <= C < t >(-7/6), where < t > = (1 + t(2))(1/2). We suppose that the initial data are real-valued and small enough, belonging to the weighted Sobolev space H-1,H-1 = {phi epsilon L-2; vertical bar vertical bar root 1 + x(2) root 1 - partial derivative(2)(x)phi vertical bar vertical bar < infinity}. In comparison with the previous paper (Internat. Res. Notices 8 (1999), 395-418), here we exclude the condition that the integral of the initial data u(0) is zero. We prove the time decay estimates (3)root t(2) (3)root < t >vertical bar vertical bar u(t)u(x)(t)vertical bar vertical bar infinity <= C epsilon and < t >(1/3 - 1/3 beta)vertical bar vertical bar u(t)vertical bar vertical bar(beta) <= C epsilon for all t epsilon R, where 4 < beta <= infinity. We also find the asymptotics for large time of the solution in the neighborhood of the self-similar solution.
引用
收藏
页码:197 / 227
页数:31
相关论文
共 31 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]  
[Anonymous], 1972, PUBL RES I MATH SCI
[3]  
[Anonymous], 1984, MATH USSR SBORNIK
[4]   DISPERSIVE BLOWUP OF SOLUTIONS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS [J].
BONA, JL ;
SAUT, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :3-57
[5]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[6]  
Constantin P., 1988, J AM MATH SOC, V1, P413
[7]  
CRAIG W, 1992, ANN I H POINCARE-AN, V9, P147
[8]  
DEBOUARD A, 1995, ANN I H POINCARE-AN, V12, P673
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]  
Dix D.B., 1997, LECT NOTES MATH, V1668