Block representation type of reduced enveloping algebras

被引:17
作者
Gordon, I
Premet, A
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1090/S0002-9947-01-02826-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an algebraically closed field of characteristic p, G a connected, reductive K-group, g = Lie(G), chi is an element of g* and Uchi(g) the reduced enveloping algebra of g associated with chi. Assume that G((1)) is simply-connected, p is good for G and g has a non-degenerate G-invariant bilinear form. All blocks of Uchi(g) having finite and tame representation type are determined.
引用
收藏
页码:1549 / 1581
页数:33
相关论文
共 46 条
  • [1] Benson, 1991, CAMBRIDGE STUDIES AD, V30
  • [2] Borel A., 1991, GRADUATE TEXTS MATH, DOI 10.1007/978-1-4612-0941-6
  • [3] BROWN KA, IN PRESS MATH Z
  • [4] TAMENESS OF BISERIAL ALGEBRAS
    CRAWLEYBOEVEY, W
    [J]. ARCHIV DER MATHEMATIK, 1995, 65 (05) : 399 - 407
  • [5] Drozd Yu. A., 1983, VISN KIIV U MAT MEKH, V25, P70
  • [6] ERDMANN K, 1990, LECT NOTES MATH, V1428, pR3
  • [7] FARNSTEINER R, 1995, J REINE ANGEW MATH, V464, P47
  • [8] FISCHER G, 1982, THESIS U BIELEFELD
  • [9] GEOMETRY OF P-UNIPOTENT LIE-ALGEBRAS
    FRIEDLANDER, EM
    PARSHALL, BJ
    [J]. JOURNAL OF ALGEBRA, 1987, 109 (01) : 25 - 45
  • [10] DEFORMATIONS OF LIE-ALGEBRA REPRESENTATIONS
    FRIEDLANDER, EM
    PARSHALL, BJ
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (03) : 375 - 395