On the robustness of backward stochastic differential equations

被引:48
作者
Briand, P [1 ]
Delyon, B [1 ]
Mémin, J [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
backward stochastic differential equation (BSDE); stability of BSDEs; weak convergence of filtrations; discretization;
D O I
10.1016/S0304-4149(01)00131-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the robustness of backward stochastic differential equations (BSDEs for short) w.r.t. the Brownian motion; more precisely, we will show that if W-n is a martingale approximation of a Brownian motion W then the solution to the BSDE driven by the martingale W-n converges to the solution of the classical BSDE, namely the BSDE driven by W. The particular case of the scaled random walks has been studied in Briand et al. (Electron. Comm. Probab. 6 (2001) 1). Here, we deal with a more general situation and we will not assume that the W-n has the predictable representation property: this yields an orthogonal martingale in the BSDE driven by W-n. As a byproduct of our result, we obtain the convergence of the "Euler scheme" for BSDEs corresponding to the case where W-n is a time discretization of W. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 19 条
[11]  
JACOD J, 1987, GRUNDLHEREN MATH WIS, V288
[12]  
Jacod J., 1979, Calcul stochastique et problemes de martingales
[13]  
Karoui N. E., 1997, MATH FINANC, V7, P1
[14]  
Kurtz T G., 1996, LECT NOTES MATH, V1627, P1
[15]  
MEMIN J, 1991, LECT NOTES MATH, V1485, P162
[16]   Generalized BSDEs and nonlinear Neumann boundary value problems [J].
Pardoux, E ;
Zhang, SG .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (04) :535-558
[17]   Probabilistic interpretation of a system of semi-linear parabolic partial differential equations [J].
Pardoux, E ;
Pradeilles, F ;
Rao, ZS .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04) :467-490
[18]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[19]  
Protter P., 1990, APPL MATH, V21