A simple universal property of Thom ring spectra

被引:16
作者
Antolin-Camarena, Omar [1 ]
Barthel, Tobias [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Copenhagen, Ctr Symmetry & Deformat, Univ Sparken 5, DK-2100 Copenhagen, Denmark
关键词
TOPOLOGICAL HOCHSCHILD HOMOLOGY;
D O I
10.1112/topo.12084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple universal property of the multiplicative structure on the Thom spectrum of an n-fold loop map, obtained as a special case of a characterization of the algebra structure on the colimit of a lax O-monoidal functor. This allows us to relate Thom spectra to En-algebras of a given characteristic in the sense of Szymik. As applications, we recover the Hopkins-Mahowald theorem realizing HFp and HZ as Thom spectra, and compute the topological Hochschild homology and the cotangent complex of various Thom spectra.
引用
收藏
页码:56 / 78
页数:23
相关论文
共 28 条
  • [1] Ando M., 2011, PREPRINT
  • [2] Units of ring spectra, orientations, and Thom spectra via rigid infinite loop space theory
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    Hopkins, Michael J.
    Rezk, Charles
    [J]. JOURNAL OF TOPOLOGY, 2014, 7 (04) : 1077 - 1117
  • [3] An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    Hopkins, Michael J.
    Rezk, Charles
    [J]. JOURNAL OF TOPOLOGY, 2014, 7 (03) : 869 - 893
  • [4] [Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
  • [5] Characteristics for ε∞ ring spectra
    Baker, Andrew
    [J]. ALPINE BOUQUET OF ALGEBRAIC TOPOLOGY, 2018, 708 : 1 - 17
  • [6] Relative Thom spectra via operadic Kan extensions
    Beardsley, Jonathan
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02): : 1151 - 1162
  • [7] Topological Hochschild homology of Thom spectra and the free loop space
    Blumberg, Andrew J.
    Cohen, Ralph L.
    Schlichtkrull, Christian
    [J]. GEOMETRY & TOPOLOGY, 2010, 14 (02) : 1165 - 1242
  • [8] Topological Hochschild homology of Thom spectra which are E∞-ring spectra
    Blumberg, Andrew J.
    [J]. JOURNAL OF TOPOLOGY, 2010, 3 (03) : 535 - 560
  • [9] Bruner R R, 1986, Lecture Notes in Math., V1176
  • [10] En genera
    Chadwick, Steven Greg
    Mandell, Michael A.
    [J]. GEOMETRY & TOPOLOGY, 2015, 19 (06) : 3193 - 3232