A simple universal property of Thom ring spectra

被引:18
作者
Antolin-Camarena, Omar [1 ]
Barthel, Tobias [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Copenhagen, Ctr Symmetry & Deformat, Univ Sparken 5, DK-2100 Copenhagen, Denmark
关键词
TOPOLOGICAL HOCHSCHILD HOMOLOGY;
D O I
10.1112/topo.12084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple universal property of the multiplicative structure on the Thom spectrum of an n-fold loop map, obtained as a special case of a characterization of the algebra structure on the colimit of a lax O-monoidal functor. This allows us to relate Thom spectra to En-algebras of a given characteristic in the sense of Szymik. As applications, we recover the Hopkins-Mahowald theorem realizing HFp and HZ as Thom spectra, and compute the topological Hochschild homology and the cotangent complex of various Thom spectra.
引用
收藏
页码:56 / 78
页数:23
相关论文
共 28 条
[1]  
Ando M., 2011, PREPRINT
[2]   Units of ring spectra, orientations, and Thom spectra via rigid infinite loop space theory [J].
Ando, Matthew ;
Blumberg, Andrew J. ;
Gepner, David ;
Hopkins, Michael J. ;
Rezk, Charles .
JOURNAL OF TOPOLOGY, 2014, 7 (04) :1077-1117
[3]   An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology [J].
Ando, Matthew ;
Blumberg, Andrew J. ;
Gepner, David ;
Hopkins, Michael J. ;
Rezk, Charles .
JOURNAL OF TOPOLOGY, 2014, 7 (03) :869-893
[4]  
[Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
[5]   Characteristics for ε∞ ring spectra [J].
Baker, Andrew .
ALPINE BOUQUET OF ALGEBRAIC TOPOLOGY, 2018, 708 :1-17
[6]   Relative Thom spectra via operadic Kan extensions [J].
Beardsley, Jonathan .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02) :1151-1162
[7]   Topological Hochschild homology of Thom spectra and the free loop space [J].
Blumberg, Andrew J. ;
Cohen, Ralph L. ;
Schlichtkrull, Christian .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :1165-1242
[8]   Topological Hochschild homology of Thom spectra which are E∞-ring spectra [J].
Blumberg, Andrew J. .
JOURNAL OF TOPOLOGY, 2010, 3 (03) :535-560
[9]  
Bruner R R, 1986, Lecture Notes in Math., V1176
[10]   En genera [J].
Chadwick, Steven Greg ;
Mandell, Michael A. .
GEOMETRY & TOPOLOGY, 2015, 19 (06) :3193-3232