Relations between distributional, Li-Yorke and ω chaos

被引:18
作者
Guirao, JLG
Lampart, M
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Murcia, Spain
[2] Silesian Univ Opava, Inst Math, Opava 74601, Czech Republic
关键词
D O I
10.1016/j.chaos.2005.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The forcing relations between notions of distributional, Li-Yorke and omega chaos were studied by many authors. In this paper we summarize all known connections between these three different types of chaos and fulfill the results for general compact metric spaces by the construction of a selfmap on a compact perfect set which is omega chaotic, not distributionally chaotic and has zero topological entropy. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:788 / 792
页数:5
相关论文
共 18 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
Babilonova M., 1999, ANN MATH SIL, V13, P33
[3]   Iteration theory:: Dynamical systems and functional equations [J].
Balibrea, F ;
Reich, L ;
Smítal, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1627-1647
[4]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[5]   Dynamics of homeomorphisms on minimal sets generated by triangular mappings [J].
Forti, GL ;
Paganoni, L ;
Smítal, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) :1-20
[6]  
Furstenberg H, 1981, Recurrence in ergodic theory and combinatorial number theory
[7]  
Guirao JLG, 2005, CHAOS SOLITON FRACT, V24, P1203, DOI [10.1016/j.chaos.2004.09.103, 10.1016/j.chaos.2004.09.013]
[8]   ON ENTROPY OF UNIQUELY ERGODIC TRANSFORMATIONS [J].
HAHN, F ;
KATZNELS.Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 126 (02) :335-&
[9]  
Huang W, 2001, ERGOD THEOR DYN SYST, V21, P77
[10]  
KUCHTA M, 1989, P EUR C IT THEOR SPA, P427