Small data blow-up of L 2 or H 1-solution for the semilinear Schrodinger equation without gauge invariance

被引:34
作者
Ikeda, Masahiro [1 ]
Inui, Takahisa [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Kyoto 6068502, Japan
关键词
Critical exponent; Nonlinear Schrodinger equation; Nongauge invariance; L-2-subcritical; Strauss exponent; CAUCHY-PROBLEM; CRITICAL EXPONENTS; EXISTENCE;
D O I
10.1007/s00028-015-0273-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for the semilinear Schrodinger equation: i partial derivative(t)u + Delta u = lambda vertical bar u vertical bar(p,) (t, d) is an element of [0, T)x R-n, (NLS) where p > 1, lambda is an element of C\. {0}. In this paper, we will prove a small data blow-up result of L-2 and H-1-solution for (NLS) in 1 < p < 1 + 4/n. Also, an upper bound of the life span will be given (Theorem 2.2).
引用
收藏
页码:571 / 581
页数:11
相关论文
共 28 条