Small data blow-up of L 2 or H 1-solution for the semilinear Schrodinger equation without gauge invariance

被引:36
作者
Ikeda, Masahiro [1 ]
Inui, Takahisa [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Kyoto 6068502, Japan
关键词
Critical exponent; Nonlinear Schrodinger equation; Nongauge invariance; L-2-subcritical; Strauss exponent; CAUCHY-PROBLEM; CRITICAL EXPONENTS; EXISTENCE;
D O I
10.1007/s00028-015-0273-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for the semilinear Schrodinger equation: i partial derivative(t)u + Delta u = lambda vertical bar u vertical bar(p,) (t, d) is an element of [0, T)x R-n, (NLS) where p > 1, lambda is an element of C\. {0}. In this paper, we will prove a small data blow-up result of L-2 and H-1-solution for (NLS) in 1 < p < 1 + 4/n. Also, an upper bound of the life span will be given (Theorem 2.2).
引用
收藏
页码:571 / 581
页数:11
相关论文
共 28 条
[1]  
[Anonymous], ELECT J DIFFER EQU
[2]  
[Anonymous], 2003, Electron. J. Differ. Equ
[3]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[4]  
Cazenave T., 2003, COURANT LECT NOTES M, V10
[5]   Regional blow-up for a higher-order semilinear parabolic equation [J].
Chaves, M ;
Galaktionov, VA .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :601-623
[6]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[7]   Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators [J].
Galaktionov, VA ;
Pohozaev, SI .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1321-1338
[8]   Global solutions for 2D quadratic Schrodinger equations [J].
Germain, P. ;
Masmoudi, N. ;
Shatah, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05) :505-543
[9]   ALMOST GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR SCHRODINGER-EQUATIONS IN 3 SPACE DIMENSIONS [J].
GINIBRE, J ;
HAYASHI, N .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (01) :119-140
[10]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71