Integrating Marine Species Biomass Data by Modelling Functional Knowledge

被引:0
|
作者
Tucker, Allan [1 ]
Duplisea, Daniel [2 ]
机构
[1] Brunel Univ, Sch Informat Syst Comp & Maths, Uxbridge UB8 3PH, Middx, England
[2] Fisheries & Oceans Canada, Maurice Lamontagne Inst, Mont Joli, PQ G5H 3Z4, Canada
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011 | 2011年 / 7014卷
关键词
OPTIMIZATION; DYNAMICS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ecosystems and their underlying foodwebs are complex. There are many hypothesised functions that play key roles in the delicate balance of these systems. In this paper, we explore methods for identifying species that exhibit similar functional relationships between them using fish survey data from oceans in three different geographical regions. We also exploit these functionally equivalent species to integrate the datasets into a single functional model and show that the quality of prediction is improved and the identified species make ecological sense. Of course, the approach is not only limited to fish survey data. In fact, it can be applied to any domain where multiple studies are recorded of comparable systems that can exhibit similar functional relationships.
引用
收藏
页码:352 / +
页数:2
相关论文
共 40 条
  • [1] Global marine plankton functional type biomass distributions: coccolithophores
    O'Brien, C. J.
    Peloquin, J. A.
    Vogt, M.
    Heinle, M.
    Gruber, N.
    Ajani, P.
    Andruleit, H.
    Aristegui, J.
    Beaufort, L.
    Estrada, M.
    Karentz, D.
    Kopczynska, E.
    Lee, R.
    Poulton, A. J.
    Pritchard, T.
    Widdicombe, C.
    EARTH SYSTEM SCIENCE DATA, 2013, 5 (02) : 259 - 276
  • [2] Global marine plankton functional type biomass distributions: Phaeocystis spp
    Vogt, M.
    O'Brien, C.
    Peloquin, J.
    Schoemann, V.
    Breton, E.
    Estrada, M.
    Gibson, J.
    Karentz, D.
    Van Leeuwe, M. A.
    Stefels, J.
    Widdicombe, C.
    Peperzak, L.
    EARTH SYSTEM SCIENCE DATA, 2012, 4 (01) : 107 - 120
  • [3] Knowledge through partnerships: integrating marine protected area monitoring and ocean observing systems
    Carr, Mark H.
    Woodson, Clifton B.
    Cheriton, Olivia M.
    Malone, Daniel
    McManus, Margaret A.
    Raimondi, Peter T.
    FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2011, 9 (06) : 342 - 350
  • [4] Using stable isotope data to advance marine food web modelling
    McCormack, Stacey A.
    Trebilco, Rowan
    Melbourne-Thomas, Jessica
    Blanchard, Julia L.
    Fulton, Elizabeth A.
    Constable, Andrew
    REVIEWS IN FISH BIOLOGY AND FISHERIES, 2019, 29 (02) : 277 - 296
  • [5] Microplastic ingestion in marine mesozooplankton species associated with functional feeding traits
    Valdez-Cibrian, Alejandra
    Kozak, Eva R.
    Franco-Gordo, Carmen
    MARINE ENVIRONMENTAL RESEARCH, 2024, 200
  • [6] Integrating multiple data sources to fit matrix population models for interacting species
    Barraquand, Frederic
    Gimenez, Olivier
    ECOLOGICAL MODELLING, 2019, 411
  • [7] Hybrid Partial Least Squares Models for Batch Processes: Integrating Data with Process Knowledge
    Ghosh, Debanjan
    Mhaskar, Prashant
    MacGregor, John F.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (26) : 9508 - 9520
  • [8] High predictability of spring phytoplankton biomass in mesocosms at the species, functional group and community level
    Bauer, Barbara
    Sommer, Ulrich
    Gaedke, Ursula
    FRESHWATER BIOLOGY, 2013, 58 (03) : 588 - 596
  • [9] Convergence, divergence, and parallelism in marine biodiversity trends: Integrating present-day and fossil data
    Huang, Shan
    Roy, Kaustuv
    Valentine, James W.
    Jablonski, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (16) : 4903 - 4908
  • [10] Hybrid differential equations: Integrating mechanistic and data-driven techniques for modelling of water systems
    Quaghebeur, Ward
    Torfs, Elena
    De Baets, Bernard
    Nopens, Ingmar
    WATER RESEARCH, 2022, 213