Breast cancer subtype discrimination using standardized 4-IHC and digital image analysis

被引:11
作者
Gandara-Cortes, Marina [1 ,2 ]
Vazquez-Boquete, Angel [3 ]
Fernandez-Rodriguez, Beatriz [3 ]
Viano, Patricia [3 ]
Insua, Dora [3 ]
Seoane-Seoane, Alejandro [3 ]
Gude, Francisco [4 ]
Gallego, Rosalia [1 ]
Fraga, Maximo [3 ]
Antunez, Jose R. [3 ]
Curiel, Teresa [5 ]
Perez-Lopez, Eva [6 ]
Garcia-Caballero, Tomas [1 ,3 ]
机构
[1] Univ Santiago de Compostela, Sch Med, Dept Morphol Sci, Santiago De Compostela, Spain
[2] Alvaro Cunqueiro Univ Hosp, Dept Pathol, Vigo, Spain
[3] Univ Clin Hosp, Dept Pathol, Santiago De Compostela, Spain
[4] Univ Clin Hosp, Clin Epidemiol Unit, Santiago De Compostela, Spain
[5] Univ Clin Hosp, Dept Oncol, Santiago De Compostela, Spain
[6] Univ Hosp Ourense, Dept Oncol, Orense, Spain
关键词
Breast cancer; 4-IHC; Image analysis; Biological subtypes; INTERNATIONAL EXPERT CONSENSUS; POPULATION-BASED COHORT; ESTROGEN-RECEPTOR; PROGESTERONE-RECEPTOR; CLINICAL-PRACTICE; PRIMARY THERAPY; RECOMMENDATIONS; CLASSIFICATION; KI-67; KI67;
D O I
10.1007/s00428-017-2194-z
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Breast cancer is a heterogeneous disease. Surrogate classification of intrinsic subtypes of invasive carcinomas by combined immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki67 (4-IHC) has increased steadily since the 2011 St Gallen symposium, due to its rapid subtyping of tumors at a reasonable cost. An important step in improving 4-IHC reproducibility and reliability will be to provide reference values from the routine use of standardized 4-IHC followed by image analysis. The aims of the current study were (1) to analyze invasive breast carcinomas using standardized 4-IHC and quantitative image analysis and (2) to compare the results obtained in the classification of biological subtypes using current Ki67 and PR threshold values proposed by different authors to sub-classifying the luminal A-like and the luminal B-like (HER2-negative) subtypes. Five hundred twenty-one tumors were analyzed by standardized immunohistochemistry, with automatic image analysis, and HER2 FISH technique. Positivity for ER was found in 82.7% and for PR in 70.1% of cases. Using the Allred scoring system, hormone receptor results showed a bimodal distribution, particularly for ER. HER2 positivity was found in 15.7% of cases, and the mean Ki67 score was 32.3%. Using the most recently proposed surrogate definitions for the classification of luminal breast cancer subtypes, the percentages of different subtypes that we found were similar to those published with genomic platforms: 40.7% luminal A-like, 32.4% luminal B-like/HER2-negative, 9.8% luminal B-like/HER2-positive, 6.0% HER2-positive, and 11.1% triple negative. Standardized 4-IHC with automatic image analysis constitutes a low-cost method for surrogate definitions of biological subtypes of breast cancer that delivers accurate results in a day.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 50 条
[31]   Breast cancer image analysis using deep learning techniques - a survey [J].
Koshy, Soumya Sara ;
Anbarasi, L. Jani ;
Jawahar, Malathy ;
Ravi, Vinayakumar .
HEALTH AND TECHNOLOGY, 2022, 12 (06) :1133-1155
[32]   Standardized Ki67 Diagnostics Using Automated Scoring-Clinical Validation in the GeparTrio Breast Cancer Study [J].
Klauschen, Frederick ;
Wienert, Stephan ;
Schmitt, Wolfgang D. ;
Loibl, Sibylle ;
Gerber, Bernd ;
Blohmer, Jens-Uwe ;
Huober, Jens ;
Ruediger, Thomas ;
Erbstoesser, Erhard ;
Mehta, Keyur ;
Lederer, Bianca ;
Dietel, Manfred ;
Denkert, Carsten ;
von Minckwitz, Gunter .
CLINICAL CANCER RESEARCH, 2015, 21 (16) :3651-3657
[33]   Immunohistochemical image analysis of estrogen and progesterone receptors in breast cancer [J].
Furukawa Y. ;
Kimijima I. ;
Abe R. .
Breast Cancer, 1998, 5 (4) :375-380
[34]   The important prognostic value of Ki-67 expression as determined by image analysis in breast cancer [J].
Pietilainen, T ;
Lipponen, P ;
Aaltomaa, S ;
Eskelinen, M ;
Kosma, VM ;
Syrjanen, K .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 1996, 122 (11) :687-692
[35]   Risk of locoregional recurrence after breast cancer surgery by molecular subtype-a systematic review and network meta-analysis [J].
Nolan, Lily ;
Davey, Matthew G. ;
Calpin, Gavin G. ;
Ryan, eanna J. ;
Boland, Michael R. .
IRISH JOURNAL OF MEDICAL SCIENCE, 2024, :2965-2974
[36]   Comparison of prognostic and predictive impact of genomic or central grade and immunohistochemical subtypes or IHC4 in HR+/HER2-early breast cancer: WSG-AGO EC-Doc Trial [J].
Gluz, O. ;
Liedtke, C. ;
Huober, J. ;
Peyro-Saint-Paul, H. ;
Kates, R. E. ;
Kreipe, H. H. ;
Hartmann, A. ;
Pelz, E. ;
Erber, R. ;
Mohrmann, S. ;
Moebus, V. ;
Augustin, D. ;
Hoffmann, G. ;
Thomssen, C. ;
Jaenicke, F. ;
Kiechle, M. ;
Wallwiener, D. ;
Kuhn, W. ;
Nitz, U. ;
Harbeck, N. .
ANNALS OF ONCOLOGY, 2016, 27 (06) :1035-1040
[37]   Digital Image Analysis of Ki-67 Stained Tissue Microarrays and Recurrence in Tamoxifen-Treated Breast Cancer Patients [J].
Egeland, Nina Gran ;
Jonsdottir, Kristin ;
Lauridsen, Kristina Lystlund ;
Skaland, Ivar ;
Hjorth, Cathrine F. ;
Gudlaugsson, Einar G. ;
Hamilton-Dutoit, Stephen ;
Lash, Timothy L. ;
Cronin-Fenton, Deirdre ;
Janssen, Emiel A. M. .
CLINICAL EPIDEMIOLOGY, 2020, 12 :771-781
[38]   Laboratory validation studies in Ki-67 digital image analysis of breast carcinoma: a pathway to routine quality assurance [J].
Wang, Morgan ;
Mclaren, Sally ;
Jeyathevan, Roopaa ;
Allanson, Benjamin Michael ;
Ireland, Amanda ;
Kang, Alexandra ;
Meehan, Katie ;
Thomas, Carla ;
Robinson, Cleo ;
Combrinck, Marais ;
Harvey, Jennet ;
Sterrett, Greg ;
Dessauvagie, Benjamin .
PATHOLOGY, 2019, 51 (03) :246-252
[39]   Molecular breast cancer subtype identification using photoacoustic spectral analysis and machine learning at the biomacromolecular level [J].
Li, Jiayan ;
Chen, Yingna ;
Ye, Wanli ;
Zhang, Mengjiao ;
Zhu, Jingtao ;
Zhi, Wenxiang ;
Cheng, Qian .
PHOTOACOUSTICS, 2023, 30
[40]   Breast Cancer Detection in Qatar: Evaluation of Mammography Image Quality Using A Standardized Assessment Tool [J].
Narayan, Anand K. ;
Al-Naemi, Huda ;
Aly, Antar ;
Kharita, Mohammad Hassan ;
Khera, Ruhani Doda ;
Hajaj, Mohamad ;
Rehani, Madan M. .
EUROPEAN JOURNAL OF BREAST HEALTH, 2020, 16 (02) :124-128