On the uniqueness of the continuation for a thermoelasticity system

被引:9
作者
Isakov, V [1 ]
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
关键词
uniqueness of the continuation; Carleman estimates; the equations of thermoelasticity;
D O I
10.1137/S0036141000366509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain new uniqueness of the continuation results for the thermoelasticity system on the plane. The crucial ingredient of the proofs is the use of Carleman-type estimates with two large parameters for basic second order partial differential operators with constant coefficients. We derive these estimates by applying differential quadratic forms. The proposed technique can be of value when studying similar questions for systems of partial differential equations of upper triangular principal structure. The results can be applied to control theory and inverse problems.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
[31]   Carleman estimates and unique continuation property for abstract elliptic equations [J].
Veli B Shakhmurov .
Boundary Value Problems, 2012
[32]   Space-like quantitative uniqueness for parabolic operators [J].
Arya, Vedansh ;
Banerjee, Agnid .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 :214-259
[33]   Quantitative uniqueness of some higher order elliptic equations [J].
Huang, Shanlin ;
Wang, Ming ;
Zheng, Quan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) :326-339
[34]   STRONG UNIQUE CONTINUATION FOR TWO-DIMENSIONAL ANISOTROPIC ELLIPTIC SYSTEMS [J].
Kuan, Rulin ;
Nakamura, Gen ;
Sasayama, Satoshi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) :2171-2183
[35]   Some Quantitative Unique Continuation Results for Eigenfunctions of the Magnetic Schrodinger Operator [J].
Davey, Blair .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (05) :876-945
[36]   A Strong Unique Continuation Property for the Heat Operator with Hardy Type Potential [J].
Banerjee, Agnid ;
Garofalo, Nicola ;
Manna, Ramesh .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) :5480-5504
[37]   Quantitative unique continuation for spectral subspaces of Schrodinger operators with singular potentials [J].
Dicke, Alexander ;
Rose, Christian ;
Seelmann, Albrecht ;
Tautenhahn, Martin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 369 :405-423
[38]   CARLEMAN ESTIMATES AND UNIQUE CONTINUATION PROPERTY FOR ELLIPTIC OPERATORS IN BANACH SPACES [J].
Shakhmurov, Veli B. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03) :873-885
[39]   Carleman estimates and unique continuation property for the Kadomtsev-Petviashvili equations [J].
Mammeri, Youcef .
APPLICABLE ANALYSIS, 2013, 92 (12) :2538-2547
[40]   Hardy uncertainty principle and unique continuation properties of covariant Schrodinger flows [J].
Barcelo, J. A. ;
Fanelli, L. ;
Gutierrez, S. ;
Ruiz, A. ;
Vilela, M. C. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (10) :2386-2415