The p-spectral radius of k-partite and k-chromatic uniform hypergraphs

被引:18
作者
Kang, L. [1 ]
Nikiforov, V. [2 ]
Yuan, X. [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
中国国家自然科学基金;
关键词
Uniform hypergraph; p-spectral radius; k-partite hypergraph; k-chromatic hypergraph; EXTREMAL PROBLEMS; GRAPHS;
D O I
10.1016/j.laa.2015.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The p-spectral radius of an r-uniform hypergraph G of order n is defined for every real number p >= 1 as [GRAPHICS] It generalizes several hypergraph parameters, including the Lagrangian, the spectral radius, and the number of edges. This paper presents solutions to several extremal problems about the p-spectral radius of k-partite and k-chromatic hypergraphs of order n. Two of the main results are: (I) Let k >= r >= 2, and let G be a k-partite r-graph of order n. For every p > 1, lambda((p)) (G) < lambda((p)) (T-k(gamma) (n)), unless G = T-k(gamma) (n), where T-k(gamma) (n) is the complete k-partite gamma-graph of order n, with parts of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular. (II) Let k >= 2, and let G be a k-chromatic 3-graph of order n. For every p >= 1, lambda((p)) (G) < lambda((p)) (Q(k)(3) (n)), unless G = Q(k)(3) (n), where Q(k)(3) (n) is a complete k-chromatic 3-graph of order n, with classes of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular The latter statement generalizes a result of Mubayi and Talbot. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 107
页数:27
相关论文
共 13 条
  • [1] Berge C., 1989, Hypergraphs: Combinatorics of Finite Sets
  • [2] Cvetkovic D., 1972, Publ. Inst. Math.(Beograd), V14, P25
  • [3] LOWER BOUNDS FOR THE CLIQUE AND THE CHROMATIC-NUMBERS OF A GRAPH
    EDWARDS, CS
    ELPHICK, CH
    [J]. DISCRETE APPLIED MATHEMATICS, 1983, 5 (01) : 51 - 64
  • [4] Erdo P., 1962, Magy. Tud. Akad. Mat. Kut. Intez. Kozl., V7, P459
  • [5] Spectral radii of graphs with given chromatic number
    Feng, Lihua
    Li, Qiao
    Zhang, Xiao-Dong
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (02) : 158 - 162
  • [6] Hardy G., 1988, INEQUALITIES
  • [7] SPECTRAL EXTREMAL PROBLEMS FOR HYPERGRAPHS
    Keevash, Peter
    Lenz, John
    Mubayi, Dhruv
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1838 - 1854
  • [8] MAXIMA FOR GRAPHS AND A NEW PROOF OF A THEOREM OF TURAN
    MOTZKIN, TS
    STRAUS, EG
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (04): : 533 - &
  • [9] Mubayi D, 2008, ELECTRON J COMB, V15
  • [10] NIKIFOROV V, ARXIV13051073V2