Hydrodynamics and viscosity in the Rindler spacetime

被引:1
作者
Eling, Christopher [1 ]
Chirco, Goffredo [2 ]
Liberati, Stefano [3 ,4 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
[2] Univ Amsterdam, Inst Theoret Phys, NL-1012 WX Amsterdam, Netherlands
[3] SISSA, I-34127 Trieste, Italy
[4] INFN Sez Trieste, I-34127 Trieste, Italy
来源
TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011 | 2012年 / 1458卷
关键词
hydrodynamics; fluid-gravity correspondence; holography; QUANTUM; ENTROPY;
D O I
10.1063/1.4734405
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the past year it has been shown that one can construct an approximate (d + 2) dimensional solution of the vacuum Einstein equations dual to a (d + 1) dimensional fluid satisfying the Navier-Stokes equations. The construction proceeds by perturbing the flat Rindler metric, subject to the boundary conditions of a non-singular causal horizon in the interior and a fixed induced metric on a given timelike surface r = r(c) in the bulk. We review this fluid-Rindler correspondence and show that the shear viscosity to entropy density ratio of the fluid on r = r(c) takes the universal value 1/4 pi both in Einstein gravity and in a wide class of higher curvature generalizations. Since the precise holographic duality for this spacetime is unknown, we propose a microscopic explanation for this viscosity based on the peculiar properties of quantum entanglement. Using a novel holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk, we calculate a shear viscosity and find that the ratio with respect to the entanglement entropy density is exactly 1/4 pi in four dimensions.
引用
收藏
页码:69 / 83
页数:15
相关论文
共 50 条
[11]   Nonoscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics [J].
Anninos, P ;
Fragile, PC .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 144 (02) :243-257
[12]   Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters [J].
Sijacki, Debora ;
Springel, Volker .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 371 (03) :1025-1046
[13]   SMOOTHED PARTICLE HYDRODYNAMICS - PHYSICAL VISCOSITY AND THE SIMULATION OF ACCRETION DISKS [J].
FLEBBE, O ;
MUNZEL, S ;
HEROLD, H ;
RIFFERT, H ;
RUDER, H .
ASTROPHYSICAL JOURNAL, 1994, 431 (02) :754-760
[14]   Smoothed particle hydrodynamics simulations of ultrarelativistic shocks with artificial viscosity [J].
Siegler, S ;
Riffert, H .
ASTROPHYSICAL JOURNAL, 2000, 531 (02) :1053-1066
[15]   Artificial viscosity in simulation of shock waves by smoothed particle hydrodynamics [J].
Nejad-Asghar, M. ;
Khesali, A. R. ;
Soltani, J. .
ASTROPHYSICS AND SPACE SCIENCE, 2008, 313 (04) :425-430
[16]   Minimizing the numerical viscosity in smoothed particle hydrodynamics simulations of discs [J].
Chen, Cheng ;
Nixon, C. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 540 (03) :2465-2473
[17]   Artificial viscosity in simulation of shock waves by smoothed particle hydrodynamics [J].
M. Nejad-Asghar ;
A. R. Khesali ;
J. Soltani .
Astrophysics and Space Science, 2008, 313 :425-430
[18]   A finite difference representation of neutrino radiation hydrodynamics in spherically symmetric general relativistic spacetime [J].
Liebendörfer, M ;
Messer, OEB ;
Mezzacappa, A ;
Bruenn, SW ;
Cardall, CY ;
Thielemann, FK .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2004, 150 (01) :263-316
[19]   Entropy of the Rindler Horizon [J].
Li Xiang ;
Zhao Zheng .
International Journal of Theoretical Physics, 2001, 40 :1755-1760
[20]   Entropy of a Rindler Observer [J].
O. Brauer ;
E. Kirchuk ;
L. Raviola ;
M. Socolovsky .
International Journal of Theoretical Physics, 2014, 53 :333-338