MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS

被引:6
|
作者
Zeng, Shengda [1 ,3 ]
Migorski, Stanislaw [2 ,3 ]
Van Thien Nguyen [4 ]
Bai, Yunru [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] FPT Univ, Dept Math, Educ Zone, Thach Ward, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
基金
欧盟地平线“2020”;
关键词
maximum principles; extremum principles; variable-order fractional calculus; time-space fractional diffusion equation; Riesz-Caputo fractional derivative;
D O I
10.1515/fca-2020-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.
引用
收藏
页码:822 / 836
页数:15
相关论文
共 50 条
  • [41] Comparison principles for the time-fractional diffusion equations with the Robin boundary conditions. Part I: Linear equations
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1504 - 1544
  • [42] Comparison principles for the time-fractional diffusion equations with the Robin boundary conditions. Part I: Linear equations
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2023, 26 : 1504 - 1544
  • [43] Mixed Generalized Jacobi and Chebyshev Collocation Method for Time-Fractional Convection-Diffusion Equations
    Tao SUN
    Journal of Mathematical Research with Applications, 2016, 36 (05) : 608 - 620
  • [44] Numerical Solution of a Class of Time-Fractional Order Diffusion Equations in a New Reproducing Kernel Space
    Zhang, Xiaoli
    Zhang, Haolu
    Jia, Lina
    Wang, Yulan
    Zhang, Wei
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [45] Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation
    Povstenko, Yuriy
    ENTROPY, 2015, 17 (06) : 4028 - 4039
  • [46] Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions
    Borikhanov, Meiirkhan
    Kirane, Mokhtar
    Torebek, Berikbol T.
    APPLIED MATHEMATICS LETTERS, 2018, 81 : 14 - 20
  • [47] On M-Wright transforms and time-fractional diffusion equations
    Moslehi, Leila
    Ansari, Alireza
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (02) : 113 - 129
  • [48] The Cauchy problem for time-fractional linear nonlocal diffusion equations
    Sen Wang
    Xian-Feng Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [49] Boundary Element Collocation Method for Time-Fractional Diffusion Equations
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING VOL 2: COMPUTATIONAL METHODS, 2010, : 223 - 232
  • [50] A stability result for the determination of order in time-fractional diffusion equations
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (03): : 379 - 388