MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS

被引:6
|
作者
Zeng, Shengda [1 ,3 ]
Migorski, Stanislaw [2 ,3 ]
Van Thien Nguyen [4 ]
Bai, Yunru [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] FPT Univ, Dept Math, Educ Zone, Thach Ward, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
基金
欧盟地平线“2020”;
关键词
maximum principles; extremum principles; variable-order fractional calculus; time-space fractional diffusion equation; Riesz-Caputo fractional derivative;
D O I
10.1515/fca-2020-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.
引用
收藏
页码:822 / 836
页数:15
相关论文
共 50 条
  • [21] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [22] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [23] An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations
    Ye, Yinlin
    Fan, Hongtao
    Li, Yajing
    Huang, Ao
    He, Weiheng
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 1083 - 1104
  • [24] A MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION EQUATION WITH MEMORY
    Mambetov, S. A.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 120 (04): : 32 - 40
  • [25] Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay
    Prakash, P.
    Choudhary, Sangita
    Daftardar-Gejji, Varsha
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [26] STRONG MAXIMUM PRINCIPLES FOR FRACTIONAL DIFFUSION DIFFERENTIAL EQUATIONS
    Liu, H. T.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (03): : 365 - 375
  • [27] Generalized Kudryashov Method for Time-Fractional Differential Equations
    Demiray, Seyma Tuluce
    Pandir, Yusuf
    Bulut, Hasan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [28] A semi-discrete finite element method for a class of time-fractional diffusion equations
    Sun, HongGuang
    Chen, Wen
    Sze, K. Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):
  • [29] Stochastic solutions of generalized time-fractional evolution equations
    Bender, Christian
    Butko, Yana A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 488 - 519
  • [30] Stochastic solutions of generalized time-fractional evolution equations
    Christian Bender
    Yana A. Butko
    Fractional Calculus and Applied Analysis, 2022, 25 : 488 - 519