MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS

被引:6
|
作者
Zeng, Shengda [1 ,3 ]
Migorski, Stanislaw [2 ,3 ]
Van Thien Nguyen [4 ]
Bai, Yunru [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] FPT Univ, Dept Math, Educ Zone, Thach Ward, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
基金
欧盟地平线“2020”;
关键词
maximum principles; extremum principles; variable-order fractional calculus; time-space fractional diffusion equation; Riesz-Caputo fractional derivative;
D O I
10.1515/fca-2020-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.
引用
收藏
页码:822 / 836
页数:15
相关论文
共 50 条
  • [1] Maximum Principles for a Class of Generalized Time-Fractional Diffusion Equations
    Shengda Zeng
    Stanisław Migórski
    Thien Van Nguyen
    Yunru Bai
    Fractional Calculus and Applied Analysis, 2020, 23 : 822 - 836
  • [2] Maximum principles for time-fractional Caputo-Katugampola diffusion equations
    Cao, Liang
    Kong, Hua
    Zeng, Sheng-Da
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 2257 - 2267
  • [3] Maximum principles for a time-space fractional diffusion equation
    Jia, Junxiong
    Li, Kexue
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 23 - 28
  • [4] MAXIMUM PRINCIPLES FOR MULTI-TERM SPACE-TIME VARIABLE-ORDER FRACTIONAL DIFFUSION EQUATIONS AND THEIR APPLICATIONS
    Liu, Zhenhai
    Zeng, Shengda
    Bai, Yunru
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 188 - 211
  • [5] Maximum Principles for Multi-Term Space-Time Variable-Order Fractional Diffusion Equations and their Applications
    Liu Zhenhai
    Zeng Shengda
    Bai Yunru
    Fractional Calculus and Applied Analysis, 2016, 19 : 188 - 211
  • [6] Sliding Methods for a Class of Generalized Fractional Laplacian Equations
    Sun, Miao
    Liu, Baiyu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2225 - 2247
  • [7] MAXIMUM PRINCIPLES FOR A CLASS OF LINEAR ELLIPTIC EQUATIONS OF EVEN ORDER
    Danet, Cristian-Paul
    Mareno, Anita
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 809 - 822
  • [8] Maximum principles and bounds for a class of fourth order nonlinear elliptic equations
    Mareno, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 495 - 500
  • [9] Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains
    Liu, Zhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 1043 - 1078
  • [10] ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Jarohs, Sven
    Weth, Tobias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) : 2581 - 2615