On the signless Laplacian spectral radius of irregular graphs

被引:23
作者
Ning, Wenjie [1 ]
Li, Hao [2 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian matrix; Signless Laplacian spectral radius; Irregular graph; NONREGULAR GRAPHS; LARGEST EIGENVALUE; BOUNDS;
D O I
10.1016/j.laa.2012.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected irregular graph. In this paper, we give lower and upper bounds for the signless Laplacian radius q(1) of G. we show that q(1) > 4e/n + (Delta-delta)(2)/2n Delta and q(1) < 2 Delta - 1/n(d-1/4) hold, where d is the; diameter of G. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2280 / 2288
页数:9
相关论文
共 25 条
  • [1] [Anonymous], LINEAR ALGE IN PRESS
  • [2] Cioaba S.M., SPECTRAL RADIUS MAXI
  • [3] Extreme eigenvalues of nonregular graphs
    Cioaba, Sebastian M.
    Gregory, David A.
    Nikiforov, Vladimir
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 483 - 486
  • [4] CIOABA SM, 2007, ELECTRON J COMB, V14, P1
  • [5] Collatz L., 1957, Abh. Math. Semin. Univ. Hamburg, V21, P63, DOI DOI 10.1007/BF02941924
  • [6] Cvetkovic D, 2010, An Introduction to the Theory of Graph Spectra
  • [7] Signless Laplacians of finite graphs
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 155 - 171
  • [8] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 19 - 33
  • [9] Hansen P., 2010, LINEAR ALGEBRA APPL, V432, P2219
  • [10] On the largest eigenvalue of non-regular graphs
    Liu, Bolian
    Shen, Jian
    Wang, Xinmao
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1010 - 1018