Computing energy eigenvalues of anharmonic oscillators using the double exponential Sinc collocation method

被引:21
作者
Gaudreau, Philippe J. [1 ]
Slevinsky, Richard M. [2 ]
Safouhi, Hassan [1 ]
机构
[1] Univ Alberta, Math Sect, Edmonton, AB T6C 4G9, Canada
[2] Univ Oxford, Radcliffe Observ Quarter, Math Inst S2 29, Oxford OX2 6GG, England
基金
加拿大自然科学与工程研究理事会;
关键词
Anharmonic oscillators; Time independent Schrodinger equation; Multiple-well potentials; HILL DETERMINANT METHOD; GROUND-STATE ENERGY; SCHRODINGER-EQUATION; PERTURBATION-THEORY; GALERKIN METHOD; WAVE-FUNCTIONS; SUMMATION; EXPANSION; EIGENENERGIES; SERIES;
D O I
10.1016/j.aop.2015.05.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum anharmonic oscillator is defined by the Hamiltonian H = -d(2/)dx(2) + V(x), where the potential is given by V(x) = Sigma(m)(i=1) c(i)x(2i) with c(m) > 0. Using the Sinc collocation method combined with the double exponential transformation, we develop a method to efficiently compute highly accurate approximations of energy eigenvalues for anharmonic oscillators. Convergence properties of the proposed method are presented. Using the principle of minimal sensitivity, we introduce an alternate expression for the mesh size for the Sinc collocation method which improves considerably the accuracy in computing eigenvalues for potentials with multiple wells. We apply our method to a number of potentials including potentials with multiple wells. The numerical results section clearly illustrates the high efficiency and accuracy of the proposed method. All our codes are written in Julia and are available upon request. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 538
页数:19
相关论文
共 59 条
[1]   ON THE AVERAGING OF ENERGY EIGENVALUES IN THE SUPERSYMMETRIC WKB METHOD [J].
ADHIKARI, R ;
DUTT, R ;
VARSHNI, YP .
PHYSICS LETTERS A, 1988, 131 (4-5) :217-221
[2]   IMPROVED HILL DETERMINANT METHOD FOR THE SOLUTION OF QUANTUM ANHARMONIC-OSCILLATORS [J].
AGRAWAL, RK ;
VARMA, VS .
PHYSICAL REVIEW A, 1994, 49 (06) :5089-5091
[3]   Comparative study of quantum anharmonic potentials [J].
Amore, P ;
Aranda, A ;
De Pace, A ;
López, JA .
PHYSICS LETTERS A, 2004, 329 (06) :451-458
[4]   A variational sinc collocation method for strong-coupling problems [J].
Amore, Paolo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :L349-L355
[5]  
Anderson E., 1999, LAPACK Users' Guide, V3rd
[6]   An elementary view of Euler's summation formula [J].
Apostol, TM .
AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (05) :409-418
[7]   The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential V(x) = Ax2α + Bx2 [J].
Barakat, T .
PHYSICS LETTERS A, 2005, 344 (06) :411-417
[9]   MULTIPLE WELL ANHARMONIC OSCILLATORS AND PERTURBATION-THEORY [J].
BENASSI, L ;
GRAFFI, S ;
GRECCHI, V .
PHYSICS LETTERS B, 1979, 82 (02) :229-232
[10]  
Bender C., 1999, Advanced Mathematical Methods for Scientists and Engineers