Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Dynamic and robust Bayesian graphical models
    Liu, Chunshan
    Kowal, Daniel R.
    Vannucci, Marina
    STATISTICS AND COMPUTING, 2022, 32 (06)
  • [42] Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models
    Chen, Yixin
    Yao, Weixin
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 268 - 284
  • [43] Towards the interpretation of time-varying regularization parameters in streaming penalized regression models
    Zbonakova, Lenka
    Monti, Ricardo Pio
    Haerdle, Wolfgang Karl
    PATTERN RECOGNITION LETTERS, 2019, 125 : 542 - 548
  • [44] Structured learning of time-varying networks with application to PM2.5 data
    Guo, Xiao a
    Zhang, Hai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (05) : 1364 - 1382
  • [45] l Dynamic Gaussian Graphical Models for Modelling Genomic Networks
    Abbruzzo, Antonio
    Di Serio, Clelia
    Wit, Ernst
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS: 10TH INTERNATIONAL MEETING, 2014, 8452 : 3 - 12
  • [46] A Scalable Strategy for the Identification of Latent-Variable Graphical Models
    Alpago, Daniele
    Zorzi, Mattia
    Ferrante, Augusto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3349 - 3362
  • [47] Scalable Estimator for Multi-task Gaussian Graphical Models Based in an IoT Network
    Wang, Beilun
    Zhang, Jiaqi
    Zhang, Yan
    Wang, Meng
    Wang, Sen
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2021, 17 (03)
  • [48] Time-varying minimum variance portfolio
    Fan, Qingliang
    Wu, Ruike
    Yang, Yanrong
    Zhong, Wei
    JOURNAL OF ECONOMETRICS, 2024, 239 (01)
  • [49] Penalized time-varying model averaging
    Sun, Yuying
    Hong, Yongmiao
    Wang, Shouyang
    Zhang, Xinyu
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1355 - 1377
  • [50] COMPRESSED SENSING OF TIME-VARYING SIGNALS
    Angelosante, D.
    Giannakis, G. B.
    Grossi, E.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 816 - +