Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Normalized least-squares estimation in time-varying ARCH models
    Fryzlewicz, Piotr
    Sapatinas, Theofanis
    Rao, Suhasini Subba
    ANNALS OF STATISTICS, 2008, 36 (02) : 742 - 786
  • [32] INFERENCE OF HIGH-DIMENSIONAL LINEAR MODELS WITH TIME-VARYING COEFFICIENTS
    Chen, Xiaohui
    He, Yifeng
    STATISTICA SINICA, 2018, 28 (01) : 255 - 276
  • [33] ESTIMATING TIME-VARYING NETWORKS
    Kolar, Mladen
    Song, Le
    Ahmed, Amr
    Xing, Eric P.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (01) : 94 - 123
  • [34] A Time-Varying Network for Cryptocurrencies
    Guo, Li
    Haerdle, Wolfgang Karl
    Tao, Yubo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 437 - 456
  • [35] Time-varying model averaging?
    Sun, Yuying
    Hong, Yongmiao
    Lee, Tae-Hwy
    Wang, Shouyang
    Zhang, Xinyu
    JOURNAL OF ECONOMETRICS, 2021, 222 (02) : 974 - 992
  • [36] Time-dynamic varying coefficient models for longitudinal data
    Lee, Kyeongeun
    Lee, Young K.
    Park, Byeong U.
    Yang, Seong J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 123 : 50 - 65
  • [37] Common Substructure Learning of Multiple Graphical Gaussian Models
    Hara, Satoshi
    Washio, Takashi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2011, 6912 : 1 - 16
  • [38] Efficient inference of longitudinal/functional data models with time-varying additive structure
    Huang, Qian
    You, Jinhong
    Zhang, Liwen
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (02) : 744 - 771
  • [39] Reproducible learning in large-scale graphical models
    Zhou, Jia
    Li, Yang
    Zheng, Zemin
    Li, Daoji
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [40] Parameter identification for nonlinear time-varying dynamic system based on the assumption of "short time linearly varying" and global constraint optimization
    Chen, Tengfei
    He, Huan
    Chen, Guoping
    Zheng, Yuxuan
    Hou, Shuo
    Xi, Xulong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 139