Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Sieve bootstrap inference for linear time-varying coefficient models
    Friedrich, Marina
    Lin, Yicong
    JOURNAL OF ECONOMETRICS, 2024, 239 (01)
  • [22] REGULARIZED GMM FOR TIME-VARYING MODELS WITH APPLICATIONS TO ASSET PRICING
    Cui, Liyuan
    Feng, Guanhao
    Hong, Yongmiao
    INTERNATIONAL ECONOMIC REVIEW, 2024, 65 (02) : 851 - 883
  • [23] Time-varying Lasso
    Kapetanios, George
    Zikes, Filip
    ECONOMICS LETTERS, 2018, 169 : 1 - 6
  • [24] Scalable Distributed Filtering for a Class of Discrete-Time Complex Networks Over Time-Varying Topology
    Liu, Yang
    Wang, Zidong
    Zhou, Donghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 2930 - 2941
  • [25] A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models
    Wang, Beilun
    Gao, Ji
    Qi, Yanjun
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1168 - 1177
  • [26] Scalable Bayesian matrix normal graphical models for brain functional networks
    Kundu, Suprateek
    Risk, Benjamin B.
    BIOMETRICS, 2021, 77 (02) : 439 - 450
  • [27] Online Recovery of Time-varying Signals Defined over Dynamic Graphs
    Di Lorenzo, Paolo
    Ceci, Elena
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 131 - 135
  • [28] Singular Gaussian graphical models: Structure learning
    Masmoudi, Khalil
    Masmoudi, Afif
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (10) : 3106 - 3117
  • [29] Time-varying multi-regime models fitting by genetic algorithms
    Battaglia, Francesco
    Protopapas, Mattheos K.
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (03) : 237 - 252
  • [30] Estimation and model identification of longitudinal data time-varying nonparametric models
    Liu, Shu
    You, Jinhong
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 156 : 116 - 136