In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Du, Yuqing
Qu, Lianqiang
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Qu, Lianqiang
Yan, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Yan, Ting
Zhang, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Stat, Columbus, OH USACent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
机构:
Cheung Kong Grad Sch Business, Beijing 100738, Peoples R ChinaCheung Kong Grad Sch Business, Beijing 100738, Peoples R China
Li, Haitao
Wu, Chongfeng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Antai Coll Econ & Management, Shanghai 200030, Peoples R ChinaCheung Kong Grad Sch Business, Beijing 100738, Peoples R China
Wu, Chongfeng
Zhou, Chunyang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Antai Coll Econ & Management, Shanghai 200030, Peoples R ChinaCheung Kong Grad Sch Business, Beijing 100738, Peoples R China
机构:
Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
Univ Connecticut, Ctr Hlth, Publ Hlth Res Inst, E Hartford, CT 06108 USA
Univ Connecticut, Ctr Environm Sci & Engn, Storrs, CT 06269 USAUniv Connecticut, Dept Stat, Storrs, CT 06269 USA
Yan, Jun
Huang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
Univ Iowa, Sch Publ Hlth, Dept Biostat, Iowa City, IA 52242 USAUniv Connecticut, Dept Stat, Storrs, CT 06269 USA