Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Time-varying β-model for dynamic directed networks
    Du, Yuqing
    Qu, Lianqiang
    Yan, Ting
    Zhang, Yuan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1687 - 1715
  • [12] Centralized and Distributed Online Learning for Sparse Time-Varying Optimization
    Fosson, Sophie M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2542 - 2557
  • [13] Trending time-varying coefficient market models
    Zhang, Chongshan
    Yin, Xiangrong
    QUANTITATIVE FINANCE, 2012, 12 (10) : 1533 - 1546
  • [14] Time-Varying Risk Aversion and Dynamic Portfolio Allocation
    Li, Haitao
    Wu, Chongfeng
    Zhou, Chunyang
    OPERATIONS RESEARCH, 2022, 70 (01) : 23 - 37
  • [15] A Tutorial on Evaluating the Time-Varying Discrimination Accuracy of Survival Models Used in Dynamic Decision Making
    Bansal, Aasthaa
    Heagerty, Patrick J.
    MEDICAL DECISION MAKING, 2018, 38 (08) : 904 - 916
  • [16] A STRATIFIED PENALIZATION METHOD FOR SEMIPARAMETRIC VARIABLE LABELING OF MULTI-OUTPUT TIME-VARYING COEFFICIENT MODELS
    Zhang, Ting
    Wang, Weiliang
    Shao, Yu
    STATISTICA SINICA, 2023, 33 (02) : 1025 - 1045
  • [17] Model Selection for Cox Models with Time-Varying Coefficients
    Yan, Jun
    Huang, Jian
    BIOMETRICS, 2012, 68 (02) : 419 - 428
  • [18] Learning Graphical Models With Hubs
    Tan, Kean Ming
    London, Palma
    Mohan, Karthik
    Lee, Su-In
    Fazel, Maryam
    Witten, Daniela
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3297 - 3331
  • [19] Efficient semiparametric estimation in time-varying regression models
    Truquet, Lionel
    STATISTICS, 2018, 52 (03) : 590 - 618
  • [20] Decentralized Dictionary Learning Over Time-Varying Digraphs
    Daneshmand, Amir
    Sun, Ying
    Scutari, Gesualdo
    Facchinei, Francisco
    Sadler, Brian M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20