Hamilton cycles in a family of graphs which includes the generalized Petersen graphs

被引:0
作者
Dean, Matthew [1 ]
机构
[1] Univ Queensland, Dept Math, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
关键词
Hamilton cycle; Hamiltonian; generalized Petersen graph; spoked Cayley graph; I-graph; Petersen graph; vertex-transitive; Tait coloring; 1-factorization; Y-graph; DECOMPOSITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the Petersen graph does not contain a Hamilton cycle. In 1983 Alspach completely determined which Generalized Petersen graphs are Hamiltonian [1]. In this paper we define a larger class of graphs which includes the Generalized Petersen graphs as a special case, and determine which graphs in this larger class are Hamiltonian, and which are 1-factorable. We call this larger class spoked Cayley graphs.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 50 条
  • [31] On the cop number of generalized Petersen graphs
    Ball, Taylor
    Bell, Robert W.
    Guzman, Jonathan
    Hanson-Colvin, Madeleine
    Schonsheck, Nikolas
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1381 - 1388
  • [32] On automorphisms and structural properties of double generalized Petersen graphs
    Kutnar, Klavdija
    Petecki, Pawel
    DISCRETE MATHEMATICS, 2016, 339 (12) : 2861 - 2870
  • [33] On 2-rainbow domination of generalized Petersen graphs
    Shao, Zehui
    Jiang, Huiqin
    Wu, Pu
    Wang, Shaohui
    Zerovnik, Janez
    Zhang, Xiaosong
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 370 - 384
  • [34] HAMILTON CYCLES IN BIDIRECTED COMPLETE GRAPHS
    Busch, Arthur
    Mutar, Mohammed A.
    Slilaty, Daniel
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2022, 17 (02) : 137 - 149
  • [35] ON THE STAR CHROMATIC INDEX OF GENERALIZED PETERSEN GRAPHS
    Zhu, Enqiang
    Shao, Zehui
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 427 - 439
  • [36] Matching book thickness of generalized Petersen graphs
    Shao, Zeling
    Geng, Huiru
    Li, Zhiguo
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 173 - 180
  • [37] On (a, d)-Antimagic Labelings of Generalized Petersen Graphs
    Xu, Xirong
    Xu, Jun-Ming
    Lue, Min
    Zhang Baosheng
    Nan, Cao
    ARS COMBINATORIA, 2009, 90 : 411 - 421
  • [38] On Distance-Balanced Generalized Petersen Graphs
    Gang Ma
    Jianfeng Wang
    Sandi Klavžar
    Annals of Combinatorics, 2024, 28 : 329 - 349
  • [39] Double Roman Domination in Generalized Petersen Graphs
    Gao, Hong
    Huang, Jiahuan
    Yang, Yuansheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 885 - 894
  • [40] Injective edge coloring of generalized Petersen graphs
    Li, Yanyi
    Chen, Lily
    AIMS MATHEMATICS, 2021, 6 (08): : 7929 - 7943