Hamilton cycles in a family of graphs which includes the generalized Petersen graphs

被引:0
|
作者
Dean, Matthew [1 ]
机构
[1] Univ Queensland, Dept Math, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
关键词
Hamilton cycle; Hamiltonian; generalized Petersen graph; spoked Cayley graph; I-graph; Petersen graph; vertex-transitive; Tait coloring; 1-factorization; Y-graph; DECOMPOSITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the Petersen graph does not contain a Hamilton cycle. In 1983 Alspach completely determined which Generalized Petersen graphs are Hamiltonian [1]. In this paper we define a larger class of graphs which includes the Generalized Petersen graphs as a special case, and determine which graphs in this larger class are Hamiltonian, and which are 1-factorable. We call this larger class spoked Cayley graphs.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 50 条
  • [21] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [22] POWER DOMINATION IN THE GENERALIZED PETERSEN GRAPHS
    Zhao, Min
    Shan, Erfang
    Kang, Liying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 695 - 712
  • [23] On the rna number of generalized Petersen graphs
    Sehrawat, Deepak
    Bhattacharjya, Bikash
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 451 - 466
  • [24] Beyond symmetry in generalized Petersen graphs
    Ignacio García-Marco
    Kolja Knauer
    Journal of Algebraic Combinatorics, 2024, 59 : 331 - 357
  • [25] On the total coloring of generalized Petersen graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1471 - 1475
  • [26] Embedding of circulant graphs and generalized Petersen graphs on projective plane
    Yang, Yan
    Liu, Yanpei
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (01) : 209 - 220
  • [27] Embedding of circulant graphs and generalized Petersen graphs on projective plane
    Yan Yang
    Yanpei Liu
    Frontiers of Mathematics in China, 2015, 10 : 209 - 220
  • [28] α-LABELINGS OF A CLASS OF GENERALIZED PETERSEN GRAPHS
    Benini, Anna
    Pasotti, Anita
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 43 - 53
  • [29] On graceful coloring of generalized Petersen graphs
    Kristiana, A. I.
    Setyawan, D.
    Albirri, E. R.
    Prihandini, R. M.
    Alfarisi, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [30] On the cop number of generalized Petersen graphs
    Ball, Taylor
    Bell, Robert W.
    Guzman, Jonathan
    Hanson-Colvin, Madeleine
    Schonsheck, Nikolas
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1381 - 1388