On the global convergence of Chebyshev's iterative method

被引:17
作者
Amat, S. [1 ]
Busquier, S. [1 ]
Gutierrez, J. M. [2 ]
Hernandez, M. A. [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ La Rioja, Dept Matemat & Computac, La Rioja, Spain
关键词
nonlinear equations; iterative methods; geometry global convergence;
D O I
10.1016/j.cam.2007.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [A. Melman, Geometry and convergence of Euler's and Halley's methods, SIAM Rev. 39(4) (1997) 728-735] the geometry and global convergence of Euler's and Halley's methods was studied. Now we complete Melman's paper by considering other classical third-order method: Chebyshev's method. By using the geometric interpretation of this method a global convergence theorem is performed. A comparison of the different hypothesis of convergence is also presented. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 6 条
[1]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[2]   A FAMILY OF CHEBYSHEV-HALLEY TYPE METHODS [J].
HERNANDEZ, MA ;
SALANOVA, MA .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 47 (1-2) :59-63
[3]   Chebyshev method and convexity [J].
Hernandez, MA ;
Salanova, MA .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 95 (01) :51-62
[4]   Geometry and convergence of Euler's and Halley's methods [J].
Melman, A .
SIAM REVIEW, 1997, 39 (04) :728-735
[5]   ON THE GEOMETRY OF HALLEY METHOD [J].
SCAVO, TR ;
THOO, JB .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (05) :417-426
[6]  
Traub J. F., 1982, ITERATIVE METHODS SO