Global dynamics of humoral immunity Chikungunya virus with two routes of infection and Holling type-II

被引:8
作者
Elaiw, A. M. [1 ]
Almalki, S. E. [2 ]
Hobiny, A. D. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Tech & Vocat Training Corp, Jeddah Coll Technol, POB 17608, Jeddah 21494, Saudi Arabia
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2019年 / 19卷 / 02期
关键词
Chikungunya virus; holling type-II; global stability; Lyapunov function; viral and cellular infections; TO-CELL INFECTION; DIFFERENTIAL DRUG EFFICACY; MATHEMATICAL-MODEL; DENGUE DISEASE; STABILITY; TRANSMISSION; MALARIA; SPREAD; BIFURCATION; HIV-1;
D O I
10.22436/jmcs.019.02.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we analyze the global dynamics of within-host Chikungunya virus (CHIKV) infection model with humoral immune response. We incorporate two modes of infections, attaching a CHIKV to a host monocyte, and contacting an infected monocyte with an uninfected monocyte. The infection incident rate is given by Holling type-II. The basic reproduction number R-0 is used to prove that the CHIKV-free equilibrium E-0 is globally asymptotically stable when R-0 <= 1 and the infected equilibrium E-1 is globally asymptotically stable when R-0 > 1. Numerical simulations have been performed to confirm the theoretical results.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 48 条
[1]   Modeling the spread and control of dengue with limited public health resources [J].
Abdelrazec, Ahmed ;
Belair, Jacques ;
Shan, Chunhua ;
Zhu, Huaiping .
MATHEMATICAL BIOSCIENCES, 2016, 271 :136-145
[2]  
Agusto F B, 2017, Infect Dis Model, V2, P244, DOI 10.1016/j.idm.2017.05.003
[3]   A mathematical model for malaria transmission with asymptomatic carriers and two age groups in the human population [J].
Beretta, Edoardo ;
Capasso, Vincenzo ;
Garao, Dario G. .
MATHEMATICAL BIOSCIENCES, 2018, 300 :87-101
[4]  
Bonyah E., 2016, Asian Pacific Journal of Tropical Disease, V6, P673, DOI 10.1016/S2222-1808(16)61108-8
[5]   Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [J].
Chitnis, Nakul ;
Hyman, James M. ;
Cushing, Jim M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) :1272-1296
[6]   Bifurcation analysis of a mathematical model for malaria transmission [J].
Chitnis, Nakul ;
Cushing, J. M. ;
Hyman, J. M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (01) :24-45
[7]   Calibration of a SEIR-SEI epidemic model to describe the Zika virus outbreak in Brazil [J].
Dantas, Eber ;
Tosin, Michel ;
Cunha, Americo, Jr. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 :249-259
[8]   On a temporal model for the Chikungunya disease: Modeling, theory and numerics [J].
Dumont, Y. ;
Chiroleu, F. ;
Domerg, C. .
MATHEMATICAL BIOSCIENCES, 2008, 213 (01) :80-91
[9]   Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus [J].
Dumont, Y. ;
Tchuenche, J. M. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (05) :809-854
[10]   VECTOR CONTROL FOR THE CHIKUNGUNYA DISEASE [J].
Dumont, Yves ;
Chiroleu, Frederic .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) :313-345