Proper holomorphic embeddings of finitely connected planar domains into a", n

被引:2
作者
Majcen, Irena [1 ]
机构
[1] Math Inst, CH-3012 Bern, Switzerland
来源
ARKIV FOR MATEMATIK | 2013年 / 51卷 / 02期
关键词
RIEMANN SURFACES; APPROXIMATION;
D O I
10.1007/s11512-012-0171-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider proper holomorphic embeddings of finitely connected planar domains into a", (n) that approximate given proper embeddings on smooth curves. As a side result we obtain a tool for approximating a diffeomorphism on a polynomially convex set in a", (n) by an automorphism of a", (n) that satisfies some additional properties along a real embedded curve.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1985, ANAL REAL COMPLEX MA
[2]  
[Anonymous], 1999, J. Geom. Anal., DOI [10.1007/BF02923090, DOI 10.1007/BF02923090]
[3]  
Arakelian N.U., 1964, IZV AKAD NAUK SSSR M, V28, P1187
[4]   Embeddings through discrete sets of balls [J].
Borell, Stefan ;
Kutzschebauch, Frank .
ARKIV FOR MATEMATIK, 2008, 46 (02) :251-269
[5]   A Carleman type theorem for proper holomorphic embeddings [J].
Buzzard, GT ;
Forstneric, F .
ARKIV FOR MATEMATIK, 1997, 35 (01) :157-169
[6]   APPROXIMATION OF BIHOLOMORPHIC-MAPPINGS BY AUTOMORPHISMS OF C(N) [J].
FORSTNERIC, F ;
ROSAY, JP .
INVENTIONES MATHEMATICAE, 1993, 112 (02) :323-349
[7]   Bordered Riemann surfaces in C2 [J].
Forstneric, Franc ;
Wold, Erlend Fornaess .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01) :100-114
[8]   HOLOMORPHIC EMBEDDINGS OF PLANAR DOMAINS INTO C-2 [J].
GLOBEVNIK, J ;
STENSONES, B .
MATHEMATISCHE ANNALEN, 1995, 303 (04) :579-597
[9]  
Kutzschebauch F, 2009, MATH Z, V262, P603, DOI 10.1007/s00209-008-0392-8
[10]   Polynomial convexity and totally real manifolds [J].
Low, Erik ;
Wold, Erlend Fornaess .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) :265-281