Nonlinear maps preserving Jordan *-products

被引:75
作者
Dai, Liqing [1 ]
Lu, Fangyan [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
关键词
Maps preserving eta-*-product; von Neumann algebras; Isomorphism; QUADRATIC FUNCTIONALS; ALGEBRAS; B(H);
D O I
10.1016/j.jmaa.2013.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let eta be a non-zero scalar. In this paper, we investigate a bijective map phi between two von Neumann algebras, one of which has no central abelian projections, satisfying phi(AB + eta BA*) = phi(A)phi(B) + eta phi(B)phi(A)* for all A, B in the domain. It is showed that phi is a linear *-isomorphism if eta is not real and phi is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism if eta is real. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 10 条
[1]   A Characterization of *-Automorphism on B(H) [J].
An, Run Ling ;
Hou, Jin Chuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (02) :287-294
[2]   Maps preserving products XY-YX* on von Neumann algebras [J].
Bai, Zhaofang ;
Du, Shuanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :103-109
[3]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[4]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[5]   Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2339-2345
[6]   LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS [J].
MIERS, CR .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (03) :717-&
[7]   A condition for a subspace of B(H) to be an ideal [J].
Molnar, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 (235) :229-234
[8]  
SEMRL P, 1991, STUD MATH, V97, P157
[9]   QUADRATIC AND QUASI-QUADRATIC FUNCTIONALS [J].
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) :1105-1113
[10]  
Semrl P., 1990, Colloq. Math., V59, P241