Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays

被引:77
作者
Tsiknakis, Nikos [1 ]
Trivizakis, Eleftherios [1 ,2 ]
Vassalou, Evangelia E. [3 ,4 ]
Papadakis, Georgios Z. [1 ,2 ]
Spandidos, Demetrios A. [5 ]
Tsatsakis, Aristidis [6 ]
Sanchez-Garcia, Jose [7 ]
Lopez-Gonzalez, Rafael [7 ,8 ]
Papanikolaou, Nikolaos [1 ,9 ]
Karantanas, Apostolos H. [1 ,2 ,3 ]
Marias, Kostas [1 ,10 ]
机构
[1] Fdn Res & Technol Hellas FORTH, Computat Biomed Lab CBML, 100 N Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Med Sch, Dept Radiol, Iraklion 71003, Greece
[3] Univ Hosp Heraklion, Dept Med Imaging, Iraklion 71110, Greece
[4] Dist Hosp, Dept Radiol, Lasithi 72300, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Univ Crete, Med Sch, Dept Forens Sci & Toxicol, Iraklion 71003, Greece
[7] QUIBIM SL, Valencia 46021, Spain
[8] Univ Valencia, Valencia 46010, Spain
[9] Champalimaud Fdn, Ctr Unknown, Computat Clin Imaging Grp, P-1400038 Lisbon, Portugal
[10] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
COVID-19; chest X-rays; interpretable artificial intelligence; transfer learning;
D O I
10.3892/etm.2020.8797
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
COVID-19 has led to an unprecedented healthcare crisis with millions of infected people across the globe often pushing infrastructures, healthcare workers and entire economies beyond their limits. The scarcity of testing kits, even in developed countries, has led to extensive research efforts towards alternative solutions with high sensitivity. Chest radiological imaging paired with artificial intelligence (AI) can offer significant advantages in diagnosis of novel coronavirus infected patients. To this end, transfer learning techniques are used for overcoming the limitations emanating from the lack of relevant big datasets, enabling specialized models to converge on limited data, as in the case of X-rays of COVID-19 patients. In this study, we present an interpretable AI framework assessed by expert radiologists on the basis on how well the attention maps focus on the diagnostically-relevant image regions. The proposed transfer learning methodology achieves an overall area under the curve of 1 for a binary classification problem across a 5-fold training/testing dataset.
引用
收藏
页码:727 / 735
页数:9
相关论文
共 37 条
[1]   Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network [J].
Abbas, Asmaa ;
Abdelsamea, Mohammed M. ;
Gaber, Mohamed Medhat .
APPLIED INTELLIGENCE, 2021, 51 (02) :854-864
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images [J].
Afshar, Parnian ;
Heidarian, Shahin ;
Naderkhani, Farnoosh ;
Oikonomou, Anastasia ;
Plataniotis, Konstantinos N. ;
Mohammadi, Arash .
PATTERN RECOGNITION LETTERS, 2020, 138 :638-643
[4]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[5]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[6]  
Bai H X., Radiology
[7]   Chest Radiograph Findings in Asymptomatic and Minimally Symptomatic Quarantined Patients in Codogno, Italy during COVID-19 Pandemic [J].
Bandirali, Michele ;
Sconfienza, Luca Maria ;
Serra, Roberta ;
Brembilla, Roberto ;
Albano, Domenico ;
Pregliasco, Fabrizio Ernesto ;
Messina, Carmelo .
RADIOLOGY, 2020, 295 (03) :E7-E7
[8]   Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review) [J].
Calina, Daniela ;
Docea, Anca Oana ;
Petrakis, Demetrios ;
Egorov, Alex M. ;
Ishmukhametov, Aydar A. ;
Gabibov, Alexsandr G. ;
Shtilman, Michael, I ;
Kostoff, Ronald ;
Carvalho, Felix ;
Vinceti, Marco ;
Spandidos, Demetrios A. ;
Tsatsakis, Aristidis .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2020, 46 (01) :3-16
[9]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[10]  
Chowdhury MEH, ARXIV200313145