The Pressure Gap for Thiols: Methanethiol Self-Assembly on Au(111) from Vacuum to 1 bar

被引:9
作者
Mom, Rik V. [1 ,8 ]
Melissen, Sigismund T. A. G. [2 ,8 ]
Sautet, Philippe [3 ,4 ]
Frenken, Joost W. M. [5 ]
Steinmann, Stephan N. [6 ]
Groot, Irene M. N. [1 ,7 ]
机构
[1] Leiden Univ, Huygens Kamerlingh Onnes Lab, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[2] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst Lumiere Mat, F-69622 Lyon, France
[3] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Adv Res Ctr Nanolithog, Sci Pk 110, NL-1098 XG Amsterdam, Netherlands
[6] Univ Claude Bernard Lyon 1, Univ Lyon, Ens Lyon, Lab Chim,CNRS UMR 5182, F-69342 Lyon, France
[7] Leiden Univ, Leiden Inst Chem, Einsteinweg 55, NL-2333 CC Leiden, Netherlands
[8] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; GOLD-SULFUR INTERFACE; MONOLAYERS; METHYLTHIOLATE; ADSORPTION; ALKANETHIOLS; SURFACES; CHEMISORPTION; PHASE;
D O I
10.1021/acs.jpcc.9b03045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Functionalizing noble metal surfaces with (bio)-organic molecules is a vibrant field of research, with key applications in medicine, catalysis, and molecular electronics. Control over the molecular self-assembly is essential to creating functional devices. Here, we exploit our high-pressure, high-temperature scanning tunneling microscope (STM) to relate the effects of controllable parameters (temperature and pressure) to atomic-scale assembly mechanisms. Using methanethiol self-assembly on Au(111) as a model system, we monitor the formation and assembly of the ubiquitous (CH3S)(2)Au "staple" motif into row structures at pressures of up to 1 bar. We observe a pressure-induced transition from the usual 1/3 monolayer (ML) saturation coverage in vacuum to 3/8 ML at 1 bar, thus providing the first evidence for a pressure gap effect for thiol adsorption. Complementing our experiments, we employed dispersion-corrected density functional theory computations to model the formed surface adlayers, corresponding STM images, and underlying equilibrium thermodynamics.
引用
收藏
页码:12382 / 12389
页数:8
相关论文
共 50 条
  • [41] Self-assembly of a Ru(II)-deuteroporphyrin lipoic acid derivative on Au(111) surfaces
    Martin-Trasanco, Rudy
    Cao, Roberto
    Montforts, Franz-Peter
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2015, 19 (09) : 1014 - 1020
  • [42] Ancillary nitrile substituents as convenient IR spectroscopic reporters for self-assembly of mercapto- and isocyanoazulenes on Au(111)
    Neal, Brad M.
    Vorushilov, Alexander S.
    DeLaRosa, Anna M.
    Robinson, Randall E.
    Berrie, Cindy L.
    Barybin, Mikhail V.
    CHEMICAL COMMUNICATIONS, 2011, 47 (38) : 10803 - 10805
  • [43] 1,4-Benzenedimethanethiol Interaction with Au(110), Ag(111), Cu(100), and Cu(111) Surfaces: Self-Assembly and Dissociation Processes
    Jia, Juanjuan
    Giglia, Angelo
    Flores, Marcos
    Grizzi, Oscar
    Pasquali, Luca
    Esaulov, Vladimir A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46) : 26866 - 26876
  • [44] Selective Self-Assembly and Modification of Herringbone Reconstructions at a Solid-Liquid Interface of Au(111)
    Genesh, Navathej Preetha
    Cui, Daling
    Dettmann, Dominik
    MacLean, Oliver
    Johal, Tarnjit Kaur
    Lunchev, Andrey V.
    Grimsdale, Andrew C.
    Rosei, Federico
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (12) : 3057 - 3062
  • [45] Multicomponent Self-Assembly with a Shape-Persistent N-Heterotriangulene Macrocycle on Au(111)
    Cui, Kang
    Schluetter, Florian
    Ivasenko, Oleksandr
    Kivala, Milan
    Schwab, Matthias G.
    Lee, Shern-Long
    Mertens, Stijn F. L.
    Tahara, Kazukuni
    Tobe, Yoshito
    Muellen, Klaus
    Mali, Kunal S.
    De Feyter, Steven
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (04) : 1652 - 1659
  • [46] Self-assembly of trithia-9-crown-3 and octathia-24-crown-8 on Au(111) surfaces
    Liu, Xiao-Ping
    Deng, Ke
    Wei, Qian
    Liang, Ming-hui
    Zhang, Zhan-Jun
    Jiang, Peng
    RSC ADVANCES, 2016, 6 (85): : 81726 - 81730
  • [47] Self-assembly and structural behavior of a model rigid C60-terminated thiolate on Au(111)
    Bubnis, G. J.
    Cleary, S. M.
    Mayne, H. R.
    CHEMICAL PHYSICS LETTERS, 2009, 470 (4-6) : 289 - 294
  • [48] Models for the Adsorption and Self-Assembly of Ethanol and 1-Decanethiol on Au(111) Surfaces. A Comparative Study by Computer Simulation
    Freitas, Filomena F. M.
    Fartaria, Rui P. S.
    Silva Fernandes, Fernando M. S.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (02) : 293 - 306
  • [49] Coverage-Dependent Self-Assembly Regimes of Alkyl-Substituted Thiophene Oligomers on Au(111): Scanning Tunneling Microscopy and Spectroscopy
    Kislitsyn, Dmitry A.
    Taber, Benjamen N.
    Gervasi, Christian F.
    Mannsfeld, Stefan C. B.
    Zhang, Lei
    Briseno, Alejandro L.
    Nazin, George V.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) : 26959 - 26967
  • [50] Hierarchical self-assembly of designed 2x2-α-helix bundle proteins on Au(111) surfaces
    Wackerbarth, Hainer
    Tofteng, A. Pernille
    Jensen, Knud J.
    Chorkendorff, Ib
    Ulstrup, Jens
    LANGMUIR, 2006, 22 (15) : 6661 - 6667